These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 7072991)
1. The cellular organization of fibroblastic cells and macrophages at regions of uncalcified cartilage resorption in the embryonic chick femur as revealed by alkaline and acid phosphatase histochemistry. Sorrell JM; Weiss L Anat Rec; 1982 Apr; 202(4):491-9. PubMed ID: 7072991 [TBL] [Abstract][Full Text] [Related]
2. A light and electron microscopic study of the region of cartilage resorption in the embryonic chick femur. Sorrell JM; Weiss L Anat Rec; 1980 Nov; 198(3):513-30. PubMed ID: 7457941 [TBL] [Abstract][Full Text] [Related]
3. Heterogeneity of the cartilage-marrow interface during uncalcified cartilage resorption in the chick embryo tibia. Aceitero J; Gaytan F; Ranz FB; Ribes R J Anat; 1988 Oct; 160():39-50. PubMed ID: 3253260 [TBL] [Abstract][Full Text] [Related]
4. Histochemical and ultrastructural studies of cartilage resorption and acid phosphatase activity during antler growth in fallow deer (Dama dama). Szuwart T; Kierdorf H; Kierdorf U; Clemen G Anat Rec; 2002 Sep; 268(1):66-72. PubMed ID: 12209566 [TBL] [Abstract][Full Text] [Related]
5. Cytochemical localization of tartrate-resistant acid phosphatase, alkaline phosphatase, and nonspecific esterase in perivascular cells of cartilage canals in the developing mouse epiphysis. Cole AA; Wezeman FH Am J Anat; 1987 Nov; 180(3):237-42. PubMed ID: 3434540 [TBL] [Abstract][Full Text] [Related]
6. Long-term organ culture of embryonic chick femora: a system for investigating bone and cartilage formation at an intermediate level of organization. Roach HI J Bone Miner Res; 1990 Jan; 5(1):85-100. PubMed ID: 2309583 [TBL] [Abstract][Full Text] [Related]
7. Enzyme histochemical localisation of alkaline phosphatase activity in osteogenesis imperfecta bone and growth plate: a preliminary study. Sarathchandra P; Cassella JP; Ali SY Micron; 2005; 36(7-8):715-20. PubMed ID: 16182549 [TBL] [Abstract][Full Text] [Related]
8. Ultrastructural and histochemical studies of the epiphyseal plate in normal chicks. Takechi M; Itakura C Anat Rec; 1995 May; 242(1):29-39. PubMed ID: 7604979 [TBL] [Abstract][Full Text] [Related]
9. [Osteoclasts and tartrate-resistant acid phosphatase-positive mononuclear cells in the mouse femur: a histochemical study]. Hasegawa K Hokkaido Igaku Zasshi; 1994 Jan; 69(1):72-83. PubMed ID: 8119660 [TBL] [Abstract][Full Text] [Related]
10. Perivascular cells in cartilage canals of the developing mouse epiphysis. Cole AA; Wezeman FH Am J Anat; 1985 Oct; 174(2):119-29. PubMed ID: 4061338 [TBL] [Abstract][Full Text] [Related]
11. Morphological studies on long-term culture of marrow cells: characterization of the adherent stromal cells and their interactions in maintaining the proliferation of hemopoietic stem cells. Tavassoli M; Takahashi K Am J Anat; 1982 Jun; 164(2):91-111. PubMed ID: 7102579 [TBL] [Abstract][Full Text] [Related]
12. Cytodifferentiation of the odontoclast prior to the shedding of human deciduous teeth: an ultrastructural and cytochemical study. Sahara N; Toyoki A; Ashizawa Y; Deguchi T; Suzuki K Anat Rec; 1996 Jan; 244(1):33-49. PubMed ID: 8838422 [TBL] [Abstract][Full Text] [Related]
13. New observations on the development of the embryonic chick femur: cartilage calcification before resorption. Laborde C Bone Miner; 1988 Jun; 4(2):147-56. PubMed ID: 3191277 [TBL] [Abstract][Full Text] [Related]
14. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Ashton BA; Allen TD; Howlett CR; Eaglesom CC; Hattori A; Owen M Clin Orthop Relat Res; 1980 Sep; (151):294-307. PubMed ID: 7418319 [TBL] [Abstract][Full Text] [Related]
15. Interactive cellular modulation of chondrogenic differentiation in vitro by subpopulations of chick embryonic calvarial cells. Wong M; Tuan RS Dev Biol; 1995 Jan; 167(1):130-47. PubMed ID: 7851637 [TBL] [Abstract][Full Text] [Related]
16. Neoplastic infiltration of laryngeal cartilages: histocytochemical study. Gallo A; Mocetti P; De Vincentiis M; Simonelli M; Ciampini S; Bianco P; Bonucci E Laryngoscope; 1992 Aug; 102(8):891-5. PubMed ID: 1495354 [TBL] [Abstract][Full Text] [Related]
17. Acid and alkaline phosphatase activity in migrating primordial germ cells of the early chick embryo. Swartz WJ Anat Rec; 1982 Mar; 202(3):379-85. PubMed ID: 7072983 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a murine cell-line derived from cultured bone marrow stromal cells. Garnett HM; Harigaya K; Cronkite EP Stem Cells (1981); 1982; 2(1):11-23. PubMed ID: 7157080 [TBL] [Abstract][Full Text] [Related]
19. A selective culture system for generating terminal deoxynucleotidyl transferase-positive lymphoid cells in vitro. III. Structure of the bone marrow microenvironment for early lymphopoiesis. Medlock ES; McKenna SD; Goldschneider I Lab Invest; 1993 Nov; 69(5):616-28. PubMed ID: 8246452 [TBL] [Abstract][Full Text] [Related]
20. Cells of the mononuclear phagocyte series differentiate into osteoclastic lacunar bone resorbing cells. Quinn JM; Sabokbar A; Athanasou NA J Pathol; 1996 May; 179(1):106-11. PubMed ID: 8691334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]