These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7072993)

  • 1. Development of the glycogen body through the whole length of the chick spinal cord.
    Uehara M; Ueshima T
    Anat Rec; 1982 Apr; 202(4):511-9. PubMed ID: 7072993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of glycogen in the floor plate of the chick spinal cord during development.
    Uehara M; Ueshima T
    Anat Rec; 1984 May; 209(1):105-13. PubMed ID: 6731867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure and development of avian lumbosacral specializations of the vertebral canal and the spinal cord with special reference to a possible function as a sense organ of equilibrium.
    Necker R
    Anat Embryol (Berl); 2005 Aug; 210(1):59-74. PubMed ID: 16034609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental changes in the distribution of gamma-aminobutyric acid-immunoreactive neurons in the embryonic chick lumbosacral spinal cord.
    Antal M; Berki AC; Horváth L; O'Donovan MJ
    J Comp Neurol; 1994 May; 343(2):228-36. PubMed ID: 8027440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A brachial glycogen body in the spinal cord of the domestic chicken.
    Sansone FM; Lebeda FJ
    J Morphol; 1976 Jan; 148(1):23-31. PubMed ID: 1246079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of the avian glycogen body: I. Effects of tail bud removal in the chick embryo.
    De Gennaro LD
    Growth Dev Aging; 1991; 55(1):19-26. PubMed ID: 1864679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The craniocaudal extent of the glycogen body in the domestic chicken.
    Sansone FM
    J Morphol; 1977 Jul; 153(1):87-105. PubMed ID: 894722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern of development of ascending and descending fibers in embryonic spinal cord of chick: II. A correlation with behavioral studies.
    Nornes HO; Hart H; Carry M
    J Comp Neurol; 1980 Jul; 192(1):133-41. PubMed ID: 7410608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of interneurons in the chick embryo spinal cord following in vivo treatment with retinoic acid.
    Shiga T; Gaur VP; Yamaguchi K; Oppenheim RW
    J Comp Neurol; 1995 Sep; 360(3):463-74. PubMed ID: 8543652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord.
    Berki AC; O'Donovan MJ; Antal M
    J Comp Neurol; 1995 Nov; 362(4):583-96. PubMed ID: 8636469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of the avian glycogen body. II. Observations in support of a glial nature in the chick embryo.
    De Gennaro LD
    Growth Dev Aging; 1993; 57(4):275-81. PubMed ID: 8300280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histochemical evidence of glycogen content in the dorsal ependymal lining of the spinal cord of chick embryo.
    Bosch R; Buschiazzo HO; De Buschiazzo PM; Rodríguez RR
    Acta Physiol Lat Am; 1968; 18(2):110-3. PubMed ID: 5703657
    [No Abstract]   [Full Text] [Related]  

  • 13. Are paragriseal cells in the avian lumbosacral spinal cord displaced ventral spinocerebellar tract neurons?
    Necker R
    Neurosci Lett; 2005 Jul 1-8; 382(1-2):56-60. PubMed ID: 15911121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyaluronate receptor CD44 is expressed by astrocytes in the adult chicken and in astrocyte cell precursors in early development of the chick spinal cord.
    Alfei L; Aita M; Caronti B; De Vita R; Margotta V; Medolago Albani L; Valente AM
    Eur J Histochem; 1999; 43(1):29-38. PubMed ID: 10340141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electron microscopic study of the development of the ependyma of the central canal of the mouse spinal cord.
    Sturrock RR
    J Anat; 1981 Jan; 132(Pt 1):119-36. PubMed ID: 7275786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental study of the shortened spinal cord in the adult tiger puffer fish, Takifugu rubripes (Teleostei).
    Uehara M; Taguchi K; Imagawa T; Kitagawa H
    J Morphol; 2000 Apr; 244(1):15-22. PubMed ID: 10723077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zic1 promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation.
    Aruga J; Tohmonda T; Homma S; Mikoshiba K
    Dev Biol; 2002 Apr; 244(2):329-41. PubMed ID: 11944941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogeny and effect of activity on proenkephalin mRNA expression during development of the chick spinal cord.
    Garner LK; Mendelson B; Albers KM; Kindy M; Overbeck TL; Davis BM
    J Comp Neurol; 1994 Sep; 347(1):36-46. PubMed ID: 7798381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrin mRNA variants are differentially regulated in developing chick embryo spinal cord and sensory ganglia.
    Ma E; Morgan R; Godfrey EW
    J Neurobiol; 1995 Apr; 26(4):585-97. PubMed ID: 7602321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restitution of functional neural connections in chick embryos assessed in vitro after spinal cord transection in Ovo.
    Sholomenko GN; Delaney KR
    Exp Neurol; 1998 Dec; 154(2):430-51. PubMed ID: 9878180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.