These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7072993)

  • 21. Traumatic injury of the spinal cord and nitric oxide.
    Marsala J; Orendácová J; Lukácová N; Vanický I
    Prog Brain Res; 2007; 161():171-83. PubMed ID: 17618976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Notochord and floor plate stimulate oligodendrocyte differentiation in cultures of the chick dorsal neural tube.
    Trousse F; Giess MC; Soula C; Ghandour S; Duprat AM; Cochard P
    J Neurosci Res; 1995 Jul; 41(4):552-60. PubMed ID: 7473887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early development of the circumferential axonal pathway in mouse and chick spinal cord.
    Holley JA
    J Comp Neurol; 1982 Mar; 205(4):371-82. PubMed ID: 7096626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developmental regulation of spinal motoneurons by monoaminergic nerve fibers.
    Tanaka H; Takahashi S; Oki J
    J Peripher Nerv Syst; 1997; 2(4):323-32. PubMed ID: 10975741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electron microscopic study of the progeny of ependymal stem cells in the normal and injured spinal cord.
    Attar A; Kaptanoglu E; Aydin Z; Ayten M; Sargon MF
    Surg Neurol; 2005; 64 Suppl 2():S28-32. PubMed ID: 16256837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of interleukin-1beta in the control of neuroepithelial proliferation and differentiation of the spinal cord during development.
    de la Mano A; Gato A; Alonso MI; Carnicero E; Martín C; Moro JA
    Cytokine; 2007 Feb; 37(2):128-37. PubMed ID: 17449272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cytoarchitecture, morphology, and lumbosacral spinal cord projections of the red nucleus in cattle.
    Chiocchetti R; Bombardi C; Grandis A; Mazzuoli G; Gentile A; Pisoni L; Joechler M; Lucchi ML
    Am J Vet Res; 2006 Oct; 67(10):1662-9. PubMed ID: 17014313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Is the avian glycogen body a secretory organ?
    Azcoitia I; Fernandez-Soriano J; Fernandez-Ruiz B
    J Hirnforsch; 1985; 26(6):651-7. PubMed ID: 4093594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Axon kinematics change during growth and development.
    Hao H; Shreiber DI
    J Biomech Eng; 2007 Aug; 129(4):511-22. PubMed ID: 17655472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The nerve endings of the glycogen body of embryonic and adult avian spinal cord: on the existence of two different varieties of nerve fibers.
    Pessacq-Asenjo TP
    Growth; 1984; 48(3):385-90. PubMed ID: 6500336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ontogeny of gamma-aminobutyric acid-immunoreactive neurons in the rhombencephalon and spinal cord of the sea lamprey.
    Meléndez-Ferro M; Pérez-Costas E; Villar-Cheda B; Rodríguez-Muñoz R; Anadón R; Rodicio MC
    J Comp Neurol; 2003 Sep; 464(1):17-35. PubMed ID: 12866126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of specific populations of interneurons in the ventral horn of the embryonic chick lumbosacral spinal cord.
    Antal M; Polgár E; Berki A; Birinyi A; Puskár Z
    Eur J Morphol; 1994 Aug; 32(2-4):201-6. PubMed ID: 7803167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphogenesis of catecholaminergic interneurons in the frog spinal cord.
    Heathcote RD; Chen A
    J Comp Neurol; 1994 Apr; 342(1):57-68. PubMed ID: 7911478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differentiation of the glycogen body of the chick embryo. Studies on glucose-14 C incorporation, chorioallantoic grafting, histochemistry and electrophoresis.
    De Gennaro LD
    Growth; 1974 Mar; 38(1):1-15. PubMed ID: 4150867
    [No Abstract]   [Full Text] [Related]  

  • 35. Ontogenic changes of the GABAergic system in the embryonic mouse spinal cord.
    Allain AE; Baïri A; Meyrand P; Branchereau P
    Brain Res; 2004 Mar; 1000(1-2):134-47. PubMed ID: 15053961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution and development of glutamic acid decarboxylase immunoreactivity in the spinal cord of the dogfish Scyliorhinus canicula (elasmobranchs).
    Sueiro C; Carrera I; Molist P; Rodríguez-Moldes I; Anadón R
    J Comp Neurol; 2004 Oct; 478(2):189-206. PubMed ID: 15349979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of the glycogen body of the chick spinal cord. III. The paired primordia as revealed by glycogen-specific stains.
    WATTERSON RL
    Anat Rec; 1952 May; 113(1):29-51. PubMed ID: 14924261
    [No Abstract]   [Full Text] [Related]  

  • 38. The serotoninergic bulbospinal system and brainstem-spinal cord content of serotonin-, TRH-, and substance P-like immunoreactivity in the aged rat with special reference to the spinal cord motor nucleus.
    Johnson H; Ulfhake B; Dagerlind A; Bennett GW; Fone KC; Hökfelt T
    Synapse; 1993 Sep; 15(1):63-89. PubMed ID: 7508641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Course of spinocerebellar axons in the ventral and lateral funiculi of the spinal cord with projections to the anterior lobe: an experimental anatomical study in the cat with retrograde tracing techniques.
    Xu Q; Grant G
    J Comp Neurol; 1994 Jul; 345(2):288-302. PubMed ID: 7523461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extent and time course of restoration of descending brainstem projections in spinal cord-transected lamprey.
    Davis GR; McClellan AD
    J Comp Neurol; 1994 Jun; 344(1):65-82. PubMed ID: 8063956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.