BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7073704)

  • 1. Evidence against an abstraction or direct insertion mechanism for cytochrome P-450 catalysed meta hydroxylations.
    Bush ED; Trager WF
    Biochem Biophys Res Commun; 1982 Jan; 104(2):626-32. PubMed ID: 7073704
    [No Abstract]   [Full Text] [Related]  

  • 2. Induction of liver microsomal cytochrome P450 in cynomolgus monkeys.
    Bullock P; Pearce R; Draper A; Podval J; Bracken W; Veltman J; Thomas P; Parkinson A
    Drug Metab Dispos; 1995 Jul; 23(7):736-48. PubMed ID: 7587963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective metabolism of conformational analogues of warfarin by beta-naphthoflavone-inducible cytochrome P-450.
    Heimark LD; Trager WF
    J Med Chem; 1985 Apr; 28(4):503-6. PubMed ID: 3981543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Destruction of highly purified cytochromes P-450 associated with metabolism of fluorinated ether anesthetics.
    Murphy MJ; Dunbar DA; Guengerich FP; Kaminsky LS
    Arch Biochem Biophys; 1981 Dec; 212(2):360-9. PubMed ID: 6798938
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of phenobarbital, 3-methylcholanthrene and beta-naphthoflavone pretreatment on mouse liver microsomal enzymes and on metabolite patterns of benzo[a]pyrene.
    Wang IY
    Biochem Pharmacol; 1981 Jun; 30(11):1337-43. PubMed ID: 6268094
    [No Abstract]   [Full Text] [Related]  

  • 6. Cumene hydroperoxide-supported microsomal hydroxylations of warfarin--a probe of cytochrome P-450 multiplicity and specificity.
    Fasco MJ; Piper LJ; Kaminsky LS
    Biochem Pharmacol; 1979; 28(1):97-103. PubMed ID: 31893
    [No Abstract]   [Full Text] [Related]  

  • 7. Microsomal metabolism of the carcinogen, N-2-fluorenylacetamide, by the mammary gland and liver of female rats. I. Ring- and N-hydroxylations of N-2-fluorenylacetamide.
    Malejka-Giganti D; Decker RW; Ritter CL; Polovina MR
    Carcinogenesis; 1985 Jan; 6(1):95-103. PubMed ID: 3967341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of phenobarbital and beta-naphthoflavone on oxidative metabolism of N,N-dimethyl-4-aminoazobenzene by regenerating rat-liver microsomes and its response to sulphydryl compounds.
    Raza H; Levine WG
    Xenobiotica; 1986 Sep; 16(9):827-37. PubMed ID: 3094256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral and metabolic properties of liver microsomes from imidazole-pretreated rabbits.
    Hajek KK; Novak RF
    Biochem Biophys Res Commun; 1982 Sep; 108(2):664-72. PubMed ID: 7150315
    [No Abstract]   [Full Text] [Related]  

  • 10. Metabolism of alpha-naphthoflavone and beta-naphthoflavone by rat liver microsomes and highly purified reconstituted cytochrome P-450 systems.
    Vyas KP; Shibata T; Highet RJ; Yeh HJ; Thomas PE; Ryan DE; Levin W; Jerina DM
    J Biol Chem; 1983 May; 258(9):5649-59. PubMed ID: 6853538
    [No Abstract]   [Full Text] [Related]  

  • 11. Multiple effects and metabolism of alpha-naphthoflavone in induced and uninduced hepatic microsomes.
    Nesnow S
    Basic Life Sci; 1983; 24():313-29. PubMed ID: 6860268
    [No Abstract]   [Full Text] [Related]  

  • 12. Induction of tamoxifen-4-hydroxylation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), beta-naphthoflavone (beta NF), and phenobarbital (PB) in avian liver: identification of P450 TCDDAA as catalyst of 4-hydroxylation induced by TCDD and beta NF.
    Kupfer D; Mani C; Lee CA; Rifkind AB
    Cancer Res; 1994 Jun; 54(12):3140-4. PubMed ID: 8205532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and mechanism of carbon monoxide binding to purified liver microsomal cytochrome P-450 isozymes.
    Gray RD
    J Biol Chem; 1982 Jan; 257(2):1086-94. PubMed ID: 7054168
    [No Abstract]   [Full Text] [Related]  

  • 14. Hepatic microsomal warfarin metabolism in warfarin-resistant and susceptible mouse strains: influence of pretreatment with cytochrome P-450 inducers.
    Sutcliffe FA; MacNicoll AD; Gibson GG
    Chem Biol Interact; 1990; 75(2):171-84. PubMed ID: 2369784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. beta-Naphthoflavone- and self-induced metabolism of 3,3',4,4'-tetrachlorobiphenyl in hepatic microsomes of the male, pregnant female and foetal rat.
    Morse DC; Van Bladeren PJ; Klasson Wehler E; Brouwer A
    Xenobiotica; 1995 Mar; 25(3):245-60. PubMed ID: 7618351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxylations in biosynthesis of bile acids. Cytochrome P-450 LM4 and 12alpha-hydroxylation of 5beta-cholestane-3alpha, 7alpha-diol.
    Hansson R; Wikvall K
    Eur J Biochem; 1982 Jul; 125(2):423-9. PubMed ID: 6811268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatic microsomal metabolism of androst-4-ene-3,17-dione: relative importance of ring hydroxylation and aromatization in control and induced rat liver.
    Murray M; Cantrill E; Farrell GC
    J Steroid Biochem; 1988 Feb; 29(2):233-7. PubMed ID: 3347063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of phenobarbital and beta-naphthoflavone on the activation of cyclophosphamide to mutagenic metabolites in vitro by liver and kidney from male and female rats.
    Hales BF; Jain R
    Biochem Pharmacol; 1980 Jul; 29(14):2031-7. PubMed ID: 6996685
    [No Abstract]   [Full Text] [Related]  

  • 19. Indole-3-carbinol and indole-3-acetonitrile influence on hepatic microsomal metabolism.
    Shertzer HG
    Toxicol Appl Pharmacol; 1982 Jun; 64(2):353-61. PubMed ID: 7123561
    [No Abstract]   [Full Text] [Related]  

  • 20. Retinal dehydrogenation and retinoic acid 4-hydroxylation in rat hepatic microsomes: developmental studies and effect of foreign compounds on the activities.
    Martini R; Murray M
    Biochem Pharmacol; 1994 Mar; 47(5):905-9. PubMed ID: 8135866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.