These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 7074041)

  • 1. Potent microtubule inhibitor protein from Dictyostelium discoideum.
    Weinert T; Cappuccinelli P; Wiche G
    Biochemistry; 1982 Feb; 21(4):782-9. PubMed ID: 7074041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphofructokinase from Dictyostelium discoideum is a potent inhibitor of tubulin polymerization.
    Orosz F; Santamaría B; Ovádi J; Aragón JJ
    Biochemistry; 1999 Feb; 38(6):1857-65. PubMed ID: 10026266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and genetic approaches to microtubule function in Dictyostelium discoideum.
    White E; Katz ER
    Methods Cell Biol; 1987; 28():245-59. PubMed ID: 3298993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubule organization and the effects of GFP-tubulin expression in dictyostelium discoideum.
    Kimble M; Kuzmiak C; McGovern KN; de Hostos EL
    Cell Motil Cytoskeleton; 2000 Sep; 47(1):48-62. PubMed ID: 11002310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 33K protein--an inhibitory factor of tubulin polymerization in porcine brain.
    Kotani S; Murofushi H; Nishida E; Sakai H
    J Biochem; 1984 Oct; 96(4):959-69. PubMed ID: 6151566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique functional characteristics of the polymerization and MAP binding regulatory domains of plant tubulin.
    Hugdahl JD; Bokros CL; Hanesworth VR; Aalund GR; Morejohn LC
    Plant Cell; 1993 Sep; 5(9):1063-80. PubMed ID: 8104575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate release during microtubule assembly: what stabilizes growing microtubules?
    Vandecandelaere A; Brune M; Webb MR; Martin SR; Bayley PM
    Biochemistry; 1999 Jun; 38(25):8179-88. PubMed ID: 10387063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of active tubulin and microtubule-associated proteins by ultracentrifugation and isolation of a component causing the formation of microtubule bundles.
    Hamel E; Lin CM
    Biochemistry; 1984 Aug; 23(18):4173-84. PubMed ID: 6487596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perturbation of microtubule polymerization by quercetin through tubulin binding: a novel mechanism of its antiproliferative activity.
    Gupta K; Panda D
    Biochemistry; 2002 Oct; 41(43):13029-38. PubMed ID: 12390030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of microtubules in extracts of cultured HeLa cells and the identification of HeLa microtubule-associated proteins.
    Bulinski JC; Borisy GG
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):293-7. PubMed ID: 284344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-induced inactivation of microtubule formation in brain extracts. Presence of a calcium-dependent protease acting on polymerization-stimulating microtubule-associated proteins.
    Sandoval IV; Weber K
    Eur J Biochem; 1978 Dec; 92(2):463-70. PubMed ID: 33047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnesium requirements for guanosine 5'-O-(3-thiotriphosphate) induced assembly of microtubule protein and tubulin.
    Roychowdhury S; Gaskin F
    Biochemistry; 1986 Dec; 25(24):7847-53. PubMed ID: 3542038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymorphism of tubulin oligomers in the presence of microtubule-associated proteins. Implications in microtubule assembly.
    Carlier MF; Simon C; Pantaloni D
    Biochemistry; 1984 Mar; 23(7):1582-90. PubMed ID: 6722111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rat monoclonal antibody reacting specifically with the tyrosylated form of alpha-tubulin. I. Biochemical characterization, effects on microtubule polymerization in vitro, and microtubule polymerization and organization in vivo.
    Wehland J; Willingham MC; Sandoval IV
    J Cell Biol; 1983 Nov; 97(5 Pt 1):1467-75. PubMed ID: 6415068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional elements within the dynein microtubule-binding domain.
    Koonce MP; Tikhonenko I
    Mol Biol Cell; 2000 Feb; 11(2):523-9. PubMed ID: 10679011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deoxyguanosine nucleotide analogues: potent stimulators of microtubule nucleation with reduced affinity for the exchangeable nucleotide site of tubulin.
    Hamel E; Lustbader J; Lin CM
    Biochemistry; 1984 Oct; 23(22):5314-25. PubMed ID: 6509023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of the high-molecular-weight microtubule-associated protein 2 (MAP2) into microtubules at steady state in vitro.
    Manso-Martínez R; Villasante A; Avila J
    Eur J Biochem; 1980 Apr; 105(2):307-13. PubMed ID: 7379788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Affinity labeling of tubulin's exchangeable guanosine 5'-triphosphate binding site.
    Maccioni RB; Seeds NW
    Biochemistry; 1983 Mar; 22(7):1572-9. PubMed ID: 6849868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms blocking microtubule minus end assembly: evidence for a tubulin dimer-binding protein.
    Spittle CS; Cassimeris L
    Cell Motil Cytoskeleton; 1996; 34(4):324-35. PubMed ID: 8871819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleoside diphosphate kinase does not directly interact with tubulin nor microtubules.
    Melki R; Lascu I; Carlier MF; Véron M
    Biochem Biophys Res Commun; 1992 Aug; 187(1):65-72. PubMed ID: 1325795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.