These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 7074045)

  • 1. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier.
    Tian WX; Tsou CL
    Biochemistry; 1982 Mar; 21(5):1028-32. PubMed ID: 7074045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of rate constants for the irreversible inhibition of acetylcholine esterase by continuously monitoring the substrate reaction in the presence of the inhibitor.
    Liu W; Tsou CL
    Biochim Biophys Acta; 1986 Mar; 870(2):185-90. PubMed ID: 3955054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of chymotrypsin and human skin chymase: kinetics of time-dependent inhibition in the presence of substrate.
    Johnson LA; Moon KE; Eisenberg M
    Biochim Biophys Acta; 1988 Apr; 953(3):269-79. PubMed ID: 2451541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of substrate reaction during irreversible modification of enzyme activity for enzymes involving two substrates.
    Wang ZX; Tsou CL
    J Theor Biol; 1987 Aug; 127(3):253-70. PubMed ID: 3431125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-[2,2-dimethyl-3-(N-(4-cyanobenzoyl)amino)nonanoyl]-L-phenylalanine ethyl ester as a stable ester-type inhibitor of chymotrypsin-like serine proteases: structural requirements for potent inhibition of alpha-chymotrypsin.
    Iijima K; Katada J; Yasuda E; Uno I; Hayashi Y
    J Med Chem; 1999 Jan; 42(2):312-23. PubMed ID: 9925737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [pH-dependence of tryptophan ethyl ester hydrolysis by alpha-chymotrypsin].
    Shviadas VIu; Galaev IIu; Berezin IV
    Biokhimiia; 1980 Apr; 45(4):629-35. PubMed ID: 7378494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic investigation of the alpha-chymotrypsin-catalyzed hydrolysis of peptide-ester substrates. The relationship between the structure of the peptide moiety and reactivity.
    Bizzozero SA; Baumann WK; Dutler H
    Eur J Biochem; 1975 Oct; 58(1):167-76. PubMed ID: 1183433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of peptide enzymes (pepzymes): surface-simulation synthetic peptides that mimic the chymotrypsin and trypsin active sites exhibit the activity and specificity of the respective enzyme.
    Atassi MZ; Manshouri T
    Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8282-6. PubMed ID: 8367494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of inactivation of aminoacylase by 2-chloromercuri-4-nitrophenol: a new type of complexing inhibitor.
    Wang ZX; Wang HR; Zhou HM
    Biochemistry; 1995 May; 34(20):6863-8. PubMed ID: 7756317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic differentiation between enzyme inactivation involving complex-formation with the inactivator and that involving a conformation-change step.
    Liu C; Tsou CL
    Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):501-4. PubMed ID: 1546965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of the interaction of chymotrypsin with eglin c.
    Faller B; Bieth JG
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):27-32. PubMed ID: 1741752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammalian chymotrypsin-like enzymes. Comparative reactivities of rat mast cell proteases, human and dog skin chymases, and human cathepsin G with peptide 4-nitroanilide substrates and with peptide chloromethyl ketone and sulfonyl fluoride inhibitors.
    Powers JC; Tanaka T; Harper JW; Minematsu Y; Barker L; Lincoln D; Crumley KV; Fraki JE; Schechter NM; Lazarus GG
    Biochemistry; 1985 Apr; 24(8):2048-58. PubMed ID: 3893542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of trypsin inhibition by its specific inhibitors.
    Zhou JM; Liu C; Tsou CL
    Biochemistry; 1989 Feb; 28(3):1070-6. PubMed ID: 2713358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generalized theoretical treatment of the kinetics of an enzyme-catalysed reaction in the presence of an unstable irreversible modifier.
    Topham CM
    J Theor Biol; 1990 Aug; 145(4):547-72. PubMed ID: 2246902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloroketone hydrolysis by chymotrypsin and N-methylhistidyl-57-chymotrypsin: implications for the mechanism of chymotrypsin inactivation by chloroketones.
    Prorok M; Albeck A; Foxman BM; Abeles RH
    Biochemistry; 1994 Aug; 33(32):9784-90. PubMed ID: 8068658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two theoretical problems concerning the irreversible modification kinetics of enzyme activity.
    Wang ZX
    J Theor Biol; 1990 Feb; 142(4):551-63. PubMed ID: 2338838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The active centers of Streptomyces griseus protease 3 and alpha-chymotrypsin: enzyme-substrate interactions remote from the scissile bond.
    Bauer CA; Thompson RC; Blout ER
    Biochemistry; 1976 Mar; 15(6):1291-5. PubMed ID: 814924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of alpha-chymotrypsin-mediated hydrolysis of a strained cyclic ester.
    Bolen DW; Kimura T; Nitta Y
    Biochemistry; 1987 Jan; 26(1):146-53. PubMed ID: 3828296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of inactivation of bovine pancreatic ribonuclease A by bromopyruvic acid.
    Wang MH; Wang ZX; Zhao KY
    Biochem J; 1996 Nov; 320 ( Pt 1)(Pt 1):187-92. PubMed ID: 8947485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of equilibrium constants for the binding of N-acetyl-L-tryptophan to monomeric and dimeric forms of alpha-chymotrypsin.
    Tellam R; de Jersey J; Winzor DJ
    Biochemistry; 1979 Nov; 18(24):5316-21. PubMed ID: 518837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.