BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 7074080)

  • 21. Determination of the transbilayer distribution of fluorescent lipid analogues by nonradiative fluorescence resonance energy transfer.
    Wolf DE; Winiski AP; Ting AE; Bocian KM; Pagano RE
    Biochemistry; 1992 Mar; 31(11):2865-73. PubMed ID: 1550813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics and mechanism of long-chain fatty acid transport into phosphatidylcholine vesicles from various donor systems.
    Thomas RM; Baici A; Werder M; Schulthess G; Hauser H
    Biochemistry; 2002 Feb; 41(5):1591-601. PubMed ID: 11814353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous phosphatidylcholine transfer by collision between vesicles at high lipid concentration.
    Jones JD; Thompson TE
    Biochemistry; 1989 Jan; 28(1):129-34. PubMed ID: 2640559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of lamellarity and size on calorimetric phase transitions in single component phosphatidylcholine vesicles.
    Drazenovic J; Wang H; Roth K; Zhang J; Ahmed S; Chen Y; Bothun G; Wunder SL
    Biochim Biophys Acta; 2015 Feb; 1848(2):532-43. PubMed ID: 25445167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Partition of malathion in synthetic and native membranes.
    Antunes-Madeira MC; Madeira VM
    Biochim Biophys Acta; 1987 Jul; 901(1):61-6. PubMed ID: 3593726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of the sperm adhesive protein, bindin, with phospholipid vesicles. II. Bindin induces the fusion of mixed-phase vesicles that contain phosphatidylcholine and phosphatidylserine in vitro.
    Glabe CG
    J Cell Biol; 1985 Mar; 100(3):800-6. PubMed ID: 3972896
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of acceptor membrane phosphatidylcholine on the catalytic activity of bovine liver phosphatidylcholine transfer protein.
    Runquist EA; Helmkamp GM
    Biochim Biophys Acta; 1988 May; 940(1):21-32. PubMed ID: 3284590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cholesterol desorption from clusters of phosphatidylcholine and cholesterol in unilamellar vesicle bilayers during lipid transfer or exchange.
    McLean LR; Phillips MC
    Biochemistry; 1982 Aug; 21(17):4053-9. PubMed ID: 6896996
    [No Abstract]   [Full Text] [Related]  

  • 29. Thermodynamics of interaction of octyl glucoside with phosphatidylcholine vesicles: partitioning and solubilization as studied by high sensitivity titration calorimetry.
    Keller M; Kerth A; Blume A
    Biochim Biophys Acta; 1997 Jun; 1326(2):178-92. PubMed ID: 9218549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complement proteins C5b-9 induce transbilayer migration of membrane phospholipids.
    Van der Meer BW; Fugate RD; Sims PJ
    Biophys J; 1989 Nov; 56(5):935-46. PubMed ID: 2605304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Depth profiles of pulmonary surfactant protein B in phosphatidylcholine bilayers, studied by fluorescence and electron spin resonance spectroscopy.
    Cruz A; Casals C; Plasencia I; Marsh D; Pérez-Gil J
    Biochemistry; 1998 Jun; 37(26):9488-96. PubMed ID: 9649332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incorporation of highly purified melittin into phosphatidylcholine bilayer vesicles.
    Schulze J; Mischeck U; Wigand S; Galla HJ
    Biochim Biophys Acta; 1987 Jul; 901(1):101-11. PubMed ID: 3036227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane.
    Lipsky NG; Pagano RE
    J Cell Biol; 1985 Jan; 100(1):27-34. PubMed ID: 3965473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antioxidant activity of probucol and its effects on phase transitions in phosphatidylcholine liposomes.
    McLean LR; Hagaman KA
    Biochim Biophys Acta; 1990 Nov; 1029(1):161-6. PubMed ID: 2223806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A study of phospholipid interactions between high-density lipoproteins and small unilamellar vesicles.
    Allen TM
    Biochim Biophys Acta; 1981 Jan; 640(2):385-97. PubMed ID: 7213898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein-catalyzed phospholipid exchange in bilayer vesicles determined by flow cytometry and electron microscopy.
    Xü YH; Rüppel D; Ziegler H; Hartmann W; Galla HJ
    Biochim Biophys Acta; 1982 Aug; 689(3):437-43. PubMed ID: 6897001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lateral diffusivity of lipid analogue excimeric probes in dimyristoylphosphatidylcholine bilayers.
    Sassaroli M; Vauhkonen M; Perry D; Eisinger J
    Biophys J; 1990 Feb; 57(2):281-90. PubMed ID: 2317550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissipation-enhanced quartz crystal microbalance studies on the experimental parameters controlling the formation of supported lipid bilayers.
    Seantier B; Breffa C; Félix O; Decher G
    J Phys Chem B; 2005 Nov; 109(46):21755-65. PubMed ID: 16853826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transfer of long-chain fluorescent free fatty acids between unilamellar vesicles.
    Storch J; Kleinfeld AM
    Biochemistry; 1986 Apr; 25(7):1717-26. PubMed ID: 3707905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphological behavior of lipid bilayers induced by melittin near the phase transition temperature.
    Toraya S; Nagao T; Norisada K; Tuzi S; Saitô H; Izumi S; Naito A
    Biophys J; 2005 Nov; 89(5):3214-22. PubMed ID: 16113109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.