These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 7076297)

  • 1. Microbial populations growing in the presence of fluoride at low pH isolated from dental plaque of children living in an area with fluoridated water.
    Bowden GH; Odlum O; Nolette N; Hamilton IR
    Infect Immun; 1982 Apr; 36(1):247-54. PubMed ID: 7076297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of freshly isolated strains of Streptococcus mutans and Streptococcus mitior to change in pH in the presence and absence of fluoride during growth in continuous culture.
    Hamilton IR; Bowden GH
    Infect Immun; 1982 Apr; 36(1):255-62. PubMed ID: 7076298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The microflora associated with the development of initial enamel decalcification below orthodontic bands in vivo in children living in a fluoridated-water area.
    Boyar RM; Thylstrup A; Holmen L; Bowden GH
    J Dent Res; 1989 Dec; 68(12):1734-8. PubMed ID: 2600252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plaque composition, fluoride tolerance and acid production of mutans streptococci before and after the suspension of the use of fluoride toothpastes.
    van Loveren C; Buijs JF; Kippuw N; ten Cate JM
    Caries Res; 1995; 29(6):442-8. PubMed ID: 8556746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of fluoride on the growth of oral streptococci.
    Beighton D; Hayday H
    Microbios; 1980; 27(108):117-24. PubMed ID: 7432189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plaque fluoride and mutans streptococci in plaque and saliva before and after discontinuation of water fluoridation.
    Seppä L; Hausen H; Kärkkäinen S
    Eur J Oral Sci; 1996 Aug; 104(4 ( Pt 1)):353-8. PubMed ID: 8930582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms.
    Bradshaw DJ; Marsh PD; Hodgson RJ; Visser JM
    Caries Res; 2002; 36(2):81-6. PubMed ID: 12037363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteria in human mouths involved in the production and utilization of hydrogen peroxide.
    Ryan CS; Kleinberg I
    Arch Oral Biol; 1995 Aug; 40(8):753-63. PubMed ID: 7487577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The acid-tolerant microbiota associated with plaque from initial caries and healthy tooth surfaces.
    Svensäter G; Borgström M; Bowden GH; Edwardsson S
    Caries Res; 2003; 37(6):395-403. PubMed ID: 14571116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The growth of bacteria and the production of exoglycosidic enzymes in the dental plaque of macaque monkeys.
    Beighton D; Smith K; Hayday H
    Arch Oral Biol; 1986; 31(12):829-35. PubMed ID: 3479958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidogenesis in relation to fluoride resistance of Streptococcus mutans.
    Van Loveren C; Van de Plassche-Simons YM; De Soet JJ; De Graaff J; Ten Cate JM
    Oral Microbiol Immunol; 1991 Oct; 6(5):288-91. PubMed ID: 1820566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and acid tolerance of human dental plaque bacteria.
    Harper DS; Loesche WJ
    Arch Oral Biol; 1984; 29(10):843-8. PubMed ID: 6594096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental pH as a factor in the competition between strains of the oral streptococci Streptococcus mutans, S. sanguis, and "S. mitior" growing in continuous culture.
    Bowden GH; Hamilton IR
    Can J Microbiol; 1987 Sep; 33(9):824-7. PubMed ID: 3690424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The establishment of reproducible, complex communities of oral bacteria in the chemostat using defined inocula.
    McKee AS; McDermid AS; Ellwood DC; Marsh PD
    J Appl Bacteriol; 1985 Sep; 59(3):263-75. PubMed ID: 3932293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient acid-impairment of growth ability of oral Streptococcus, Actinomyces, and Lactobacillus: a possible ecological determinant in dental plaque.
    Horiuchi M; Washio J; Mayanagi H; Takahashi N
    Oral Microbiol Immunol; 2009 Aug; 24(4):319-24. PubMed ID: 19572895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colonization resistance of defined bacterial plaques to Streptococcus mutans implantation on teeth in a model mouth.
    Perrons CJ; Donoghue HD
    J Dent Res; 1990 Feb; 69(2):483-8. PubMed ID: 2307751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of acidification on growth and glycolysis of Streptococcus sanguis and Streptococcus mutans.
    Takahashi N; Horiuchi M; Yamada T
    Oral Microbiol Immunol; 1997 Apr; 12(2):72-6. PubMed ID: 9227129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship among mutans streptococci, "low-pH" bacteria, and lodophilic polysaccharide-producing bacteria in dental plaque and early enamel caries in humans.
    van Ruyven FO; Lingström P; van Houte J; Kent R
    J Dent Res; 2000 Feb; 79(2):778-84. PubMed ID: 10728980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of acidurance of streptococcal growth and glycolysis by fluoride and gramicidin.
    Bender GR; Thibodeau EA; Marquis RE
    J Dent Res; 1985 Feb; 64(2):90-5. PubMed ID: 2579114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of fluoride on the microbial ecology of dental plaque.
    Bowden GH
    J Dent Res; 1990 Feb; 69 Spec No():653-9; discussion 682-3. PubMed ID: 2179326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.