These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7076673)

  • 21. Studies on the mechanism of inhibition of redox enzymes by substituted hydroxamic acids.
    Rich PR; Wiegand NK; Blum H; Moore AL; Bonner WD
    Biochim Biophys Acta; 1978 Aug; 525(2):325-37. PubMed ID: 210815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The mechanism of oxidation of nitroalkanes by horseradish peroxidase.
    Porter DJ; Bright HJ
    J Biol Chem; 1983 Aug; 258(16):9913-24. PubMed ID: 6885775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The reactivity of Mg-substituted horseradish peroxidases.
    Kuwahara Y; Tamura M; Yamazaki I
    J Biol Chem; 1982 Oct; 257(19):11517-22. PubMed ID: 6288689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of the transfer of oxidizing equivalents between heme iron and free radical site in yeast cytochrome c peroxidase.
    Ho PS; Hoffman BM; Kang CH; Margoliash E
    J Biol Chem; 1983 Apr; 258(7):4356-63. PubMed ID: 6300084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of porphyrin pi cation radical in zinc-substituted horseradish peroxidase.
    Kaneko Y; Tamura M; Yamazaki I
    Biochemistry; 1980 Dec; 19(25):5795-9. PubMed ID: 6257291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein control of prosthetic heme reactivity. Reaction of substrates with the heme edge of horseradish peroxidase.
    Ator MA; Ortiz de Montellano PR
    J Biol Chem; 1987 Feb; 262(4):1542-51. PubMed ID: 3805041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aminoglycosides as substrates and inhibitors of peroxidases: a possible role of these antibiotics against myeloperoxidase-dependent cytotoxicity.
    Lorrai A; Padiglia A; Medda R; Bellelli A; Arcovito A; Floris G
    J Protein Chem; 2002 Feb; 21(2):97-104. PubMed ID: 11934280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron paramagnetic resonance detection of free tyrosyl radical generated by myeloperoxidase, lactoperoxidase, and horseradish peroxidase.
    McCormick ML; Gaut JP; Lin TS; Britigan BE; Buettner GR; Heinecke JW
    J Biol Chem; 1998 Nov; 273(48):32030-7. PubMed ID: 9822676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of alternate substrates and substrate concentration on the antibody-mediated inhibition of horseradish peroxidase.
    Clark SK; Conroy JM; Harris PJ
    Mol Immunol; 1983 Dec; 20(12):1379-84. PubMed ID: 6656780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of function of the distal base between myoglobin and peroxidase.
    Yamazaki I; Hayashi Y; Makino R; Yamada H
    Adv Exp Med Biol; 1976; 74():382-8. PubMed ID: 8964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A nuclear Overhauser effect study of the heme crevice in the resting state and compound I of horseradish peroxidase: evidence for cation radical delocalization to the proximal histidine.
    Thanabal V; La Mar GN; de Ropp JS
    Biochemistry; 1988 Jul; 27(15):5400-7. PubMed ID: 3179262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proton nuclear magnetic resonance characterization of the oxidized intermediates of cytochrome c peroxidase.
    Satterlee JD; Erman JE
    J Biol Chem; 1981 Feb; 256(3):1091-3. PubMed ID: 6256380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compound X. An intermediate in enzymatic halogenation.
    Chiang R; Rand-Meir T; Makino R; Hager LP
    J Biol Chem; 1976 Oct; 251(20):6340-6. PubMed ID: 10296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of indole-3-acetic acid oxidation by horseradish peroxidases.
    Nakajima R; Yamazaki I
    J Biol Chem; 1979 Feb; 254(3):872-8. PubMed ID: 762098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The protoporphyrin-apoperoxidase complex as a horseradish peroxidase analog. A fluorimetric study of the heme pocket.
    Ugarova NN; Savitski AP; Berezin IV
    Biochim Biophys Acta; 1981 Dec; 662(2):210-9. PubMed ID: 7317437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH-dependent one- and two-electron oxidation of 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine catalyzed by horseradish peroxidase.
    Sugiyama K; Correia MA; Thummel KE; Nagata K; Darbyshire JF; Osawa Y; Gillette JR
    Chem Res Toxicol; 1994; 7(5):633-42. PubMed ID: 7841342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation and decay of hydroperoxo-ferric heme complex in horseradish peroxidase studied by cryoradiolysis.
    Denisov IG; Makris TM; Sligar SG
    J Biol Chem; 2002 Nov; 277(45):42706-10. PubMed ID: 12215454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reaction of horseradish peroxidase with azide and some implications for the heme environmental structure. NMR and kinetic studies.
    Morishima I; Ogawa S; Yonezawa T
    Biochim Biophys Acta; 1978 Dec; 537(2):293-303. PubMed ID: 31922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro bioactivation of phenytoin to a reactive free radical intermediate by prostaglandin synthetase, horseradish peroxidase, and thyroid peroxidase.
    Kubow S; Wells PG
    Mol Pharmacol; 1989 Apr; 35(4):504-11. PubMed ID: 2539558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate oxidation by the heme edge of fungal peroxidases. Reaction of Coprinus macrorhizus peroxidase with hydrazines and sodium azide.
    DePillis GD; Ortiz de Montellano PR
    Biochemistry; 1989 Sep; 28(19):7947-52. PubMed ID: 2611222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.