These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7077318)

  • 1. Na+- and Ca2+-dependent components in action potentials of the ovulation hormone producing caudo-dorsal cells in Lymnaea stagnalis (Gastropoda).
    Kits KS; Bos NP
    J Neurobiol; 1982 May; 13(3):201-16. PubMed ID: 7077318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pacemaking mechanism of the afterdischarge of the ovulation hormone-producing caudo-dorsal cells in the gastropod mollusc Lymnaea stagnalis.
    Kits KS; Bos NP
    J Neurobiol; 1981 Sep; 12(5):425-39. PubMed ID: 7276928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage- and use-dependent inhibition of Na+ channels in rat sensory neurones by 4030W92, a new antihyperalgesic agent.
    Trezise DJ; John VH; Xie XM
    Br J Pharmacol; 1998 Jul; 124(5):953-63. PubMed ID: 9692781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones.
    Nedergaard S; Flatman JA; Engberg I
    J Physiol; 1993 Jul; 466():727-47. PubMed ID: 8410714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. States of excitability in ovulation hormone producing neuroendocrine cells of Lymnaea stagnalis (gastropoda) and their relation to the egg-laying cycle.
    Kits KS
    J Neurobiol; 1980 Jul; 11(4):397-410. PubMed ID: 7400815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-activated ionic currents in goldfish pituitary cells.
    Price CJ; Goldberg JI; Chang JP
    Gen Comp Endocrinol; 1993 Oct; 92(1):16-30. PubMed ID: 7505247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Action of tetanus toxin on cholinergic neuroblastoma X glioma hybrid cells: selective blockade of Ca spikes.
    Sugimoto N; Ozutsumi K; Matsuda M; Higashida H; Miki N
    Biken J; 1983 Dec; 26(4):145-54. PubMed ID: 6378174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action potentials of embryonic dorsal root ganglion neurones in Xenopus tadpoles.
    Baccaglini PI
    J Physiol; 1978 Oct; 283():585-604. PubMed ID: 722591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology and electrophysiology of the ovulation hormone producing neuro-endocrine cells of the freshwater snail Lymnaea stagnalis (L.).
    de Vlieger TA; Kits KS; ter Maat A; Lodder JC
    J Exp Biol; 1980 Feb; 84():259-71. PubMed ID: 7189207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of the action potential into a Na-channel spike and a K-channel spike by tetrodotoxin and by tetraethylammonium ion in squid giant axons internally perfused with dilute Na-salt solutions.
    Inoue I
    J Gen Physiol; 1980 Sep; 76(3):337-54. PubMed ID: 6252279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetrodotoxin-sensitive sodium current in rat fetal ventricular myocytes--contribution to the plateau phase of action potential.
    Conforti L; Tohse N; Sperelakis N
    J Mol Cell Cardiol; 1993 Feb; 25(2):159-73. PubMed ID: 8386254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular mechanisms underlying the rhythmic bursts induced by NMDA microiontophoresis at the apical dendrites of CA1 pyramidal neurons.
    Bonansco C; Buño W
    Hippocampus; 2003; 13(1):150-63. PubMed ID: 12625465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane mechanism of neuroendocrine caudo-dorsal cell inhibition by the ring neuron in the pond snail Lymnaea stagnalis.
    Jansen RF; ter Maat A; Bos NP
    J Neurobiol; 1985 Jan; 16(1):15-26. PubMed ID: 2580946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An identified neuron modulating the activity of the ovulation hormone producing caudo-dorsal cells of the pond snail Lymnaea stagnalis.
    Jansen RF; Bos NP
    J Neurobiol; 1984 Mar; 15(2):161-7. PubMed ID: 6716100
    [No Abstract]   [Full Text] [Related]  

  • 15. The ionic basis of action potentials in petrosal ganglion cells of the cat.
    Gallego R
    J Physiol; 1983 Sep; 342():591-602. PubMed ID: 6631750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium independence of slow currents underlying spike frequency adaptation.
    Partridge LD
    J Neurobiol; 1980 Nov; 11(6):613-22. PubMed ID: 6777459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium component to action potentials in rat pars intermedia cells.
    Douglas WW; Taraskevich PS
    J Physiol; 1980 Dec; 309():623-30. PubMed ID: 7252881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The action potential of chick dorsal root ganglion neurones maintained in cell culture.
    Dichter MA; Fischbach GD
    J Physiol; 1977 May; 267(2):281-98. PubMed ID: 559758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic properties of neurones in the dorsal cochlear nucleus of mice, in vitro.
    Hirsch JA; Oertel D
    J Physiol; 1988 Feb; 396():535-48. PubMed ID: 2457693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered excitability of goldfish Mauthner cell following axotomy. II. Localization and ionic basis.
    Titmus MJ; Faber DS
    J Neurophysiol; 1986 Jun; 55(6):1440-54. PubMed ID: 2426422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.