These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 7077376)

  • 1. Cerebral vasoactivity of heme proteins in vitro. Some mechanistic considerations.
    Wellum GR; Irvine TW; Zervas NT
    J Neurosurg; 1982 Jun; 56(6):777-83. PubMed ID: 7077376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of cerebral arterial contraction induced by blood constituents.
    Toda N; Shimizu K; Ohta T
    J Neurosurg; 1980 Sep; 53(3):312-22. PubMed ID: 7420146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacodynamic characterization of hemoglobin-induced vasoactivity in isolated rat thoracic aorta.
    Kim HW; Greenburg AG
    J Lab Clin Med; 2000 Feb; 135(2):180-7. PubMed ID: 10695664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of hemoglobin and its metabolites on energy metabolism in cultured cerebrovascular smooth-muscle cells.
    Nagatani K; Masciopinto JE; Letarte PB; Haworth RA; Duff TA
    J Neurosurg; 1995 Feb; 82(2):244-9. PubMed ID: 7815153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of lipid peroxidation in the genesis of chronic vasospasm following rupture of an intracranial aneurysm.
    Sasaki T; Tanishima T; Asano T; Mayanagi Y; Sano K
    Acta Neurochir Suppl (Wien); 1979; 28(2):536-40. PubMed ID: 290253
    [No Abstract]   [Full Text] [Related]  

  • 6. [Cerebral vasospasm: comparison of contractile responses in isolated human and canine basilar arteries].
    Tanishima T
    No To Shinkei; 1983 Apr; 35(4):323-9. PubMed ID: 6575794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevention of persistent cerebral smooth muscle contraction in response to whole blood.
    Linder M; Alksne JF
    Stroke; 1978; 9(5):472-7. PubMed ID: 100906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Pathogenesis of cerebral vasospasm: with special references to the response of fresh human cerebral arteries to red blood cell hemolysate and the changes in the responses of cerebral arteries to vasoconstrictor substances after subarachnoid hemorrhage].
    Handa Y
    Nihon Geka Hokan; 1987 Mar; 56(2):124-37. PubMed ID: 3115214
    [No Abstract]   [Full Text] [Related]  

  • 9. Relaxant effect of calcitonin gene-related peptide on cerebral arterial spasm induced by experimental subarachnoid hemorrhage in dogs.
    Nozaki K; Uemura Y; Okamoto S; Kikuchi H; Mizuno N
    J Neurosurg; 1989 Oct; 71(4):558-64. PubMed ID: 2795174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein synthesis and immunoreactivities of contraction-related proteins in smooth muscle cells of canine basilar artery after experimental subarachnoid hemorrhage.
    Oka Y; Ohta S; Todo H; Kohno K; Kumon Y; Sakaki S
    J Cereb Blood Flow Metab; 1996 Nov; 16(6):1335-44. PubMed ID: 8898709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lazaroids and deferoxamine attenuate the intracellular effects of oxyhaemoglobin in vascular smooth muscle.
    Vollrath B; Chan P; Findlay M; Cook D
    Cardiovasc Res; 1995 Oct; 30(4):619-26. PubMed ID: 8575010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrovascular selectivity and vasospasmolytic action of the novel calcium antagonist (+/-)-(E)-1-(3-fluoro-6, 11-dihydrodibenz[b,e]oxepin-11-yl)-4-(3-phenyl-2-propenyl)-piperazine dimaleate in isolated cerebral arteries of the rabbit and dog.
    Minato H; Hashizume M; Masuda Y; Fujitani B; Hosoki K
    Arzneimittelforschung; 1997 Apr; 47(4):339-46. PubMed ID: 9150852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanical property of canine basilar artery in experimental subarachnoid hemorrhage (author's transl)].
    Naruo Y
    Nihon Geka Hokan; 1982 Jan; 51(1):79-92. PubMed ID: 7092468
    [No Abstract]   [Full Text] [Related]  

  • 14. Intracranial vasospasm: a study with iron compounds.
    Fox JL
    Surg Neurol; 1979 May; 11(5):363-8. PubMed ID: 35848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of chronic subarachnoid hemorrhage on basal endothelium-derived relaxing factor activity in intrathecal cerebral arteries.
    Edwards DH; Byrne JV; Griffith TM
    J Neurosurg; 1992 May; 76(5):830-7. PubMed ID: 1314293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of removal of the endothelium on vasocontraction in canine and rabbit basilar arteries.
    Nakagomi T; Kassell NF; Sasaki T; Lehman RM; Torner JC; Hongo K; Lee JH
    J Neurosurg; 1988 May; 68(5):757-66. PubMed ID: 2895803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoskeletal and extracellular matrix proteins in cerebral arteries following subarachnoid hemorrhage in monkeys.
    Macdonald RL; Weir BK; Young JD; Grace MG
    J Neurosurg; 1992 Jan; 76(1):81-90. PubMed ID: 1727173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of isolated cerebral arteries to vasoactive agents.
    White RP
    Neurosurg Clin N Am; 1990 Apr; 1(2):401-15. PubMed ID: 2136151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective hemoglobin inhibition of endothelium-dependent vasodilation of rabbit basilar artery.
    Fujiwara S; Kassell NF; Sasaki T; Nakagomi T; Lehman RM
    J Neurosurg; 1986 Mar; 64(3):445-52. PubMed ID: 3950722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral arterial constriction after experimental subarachnoid hemorrhage is associated with blood components within the arterial wall.
    Liszczak TM; Varsos VG; Black PM; Kistler JP; Zervas NT
    J Neurosurg; 1983 Jan; 58(1):18-26. PubMed ID: 6847905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.