These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7077670)

  • 1. Amino acid substitutions far from the active site of bacteriophage T4 lysozyme reduce catalytic activity and suggest that the C-terminal lobe of the enzyme participates in substrate binding.
    Grütter MG; Matthews BW
    J Mol Biol; 1982 Jan; 154(3):525-35. PubMed ID: 7077670
    [No Abstract]   [Full Text] [Related]  

  • 2. Systematic mutation of bacteriophage T4 lysozyme.
    Rennell D; Bouvier SE; Hardy LW; Poteete AR
    J Mol Biol; 1991 Nov; 222(1):67-88. PubMed ID: 1942069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replacements of Pro86 in phage T4 lysozyme extend an alpha-helix but do not alter protein stability.
    Alber T; Bell JA; Sun DP; Nicholson H; Wozniak JA; Cook S; Matthews BW
    Science; 1988 Feb; 239(4840):631-5. PubMed ID: 3277275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3.
    Matsumura M; Becktel WJ; Matthews BW
    Nature; 1988 Aug; 334(6181):406-10. PubMed ID: 3405287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and thermodynamic analysis of the packing of two alpha-helices in bacteriophage T4 lysozyme.
    Daopin S; Alber T; Baase WA; Wozniak JA; Matthews BW
    J Mol Biol; 1991 Sep; 221(2):647-67. PubMed ID: 1920439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme.
    Alber T; Sun DP; Wilson K; Wozniak JA; Cook SP; Matthews BW
    Nature; 1987 Nov 5-11; 330(6143):41-6. PubMed ID: 3118211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein.
    Alber T; Sun DP; Nye JA; Muchmore DC; Matthews BW
    Biochemistry; 1987 Jun; 26(13):3754-8. PubMed ID: 3651410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysozyme activity of bacteriophage T4 ghosts.
    Szewczyk B; Skórko R
    Biochim Biophys Acta; 1981 Nov; 662(1):131-7. PubMed ID: 7306554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies of mutants of T4 lysozyme that alter hydrophobic stabilization.
    Matsumura M; Wozniak JA; Sun DP; Matthews BW
    J Biol Chem; 1989 Sep; 264(27):16059-66. PubMed ID: 2674124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding.
    Matthews BW; Nicholson H; Becktel WJ
    Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6663-7. PubMed ID: 3477797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and thermal stability of phage T4 lysozyme.
    Alber T; Matthews BW
    Methods Enzymol; 1987; 154():511-33. PubMed ID: 3323816
    [No Abstract]   [Full Text] [Related]  

  • 12. Mutation of active site residues in synthetic T4-lysozyme gene and their effect on lytic activity.
    Anand NN; Stephen ER; Narang SA
    Biochem Biophys Res Commun; 1988 Jun; 153(2):862-8. PubMed ID: 3382407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Second-site revertants of an inactive T4 lysozyme mutant restore activity by restructuring the active site cleft.
    Poteete AR; Sun DP; Nicholson H; Matthews BW
    Biochemistry; 1991 Feb; 30(5):1425-32. PubMed ID: 1991123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of phage P22 gene 19 lysozyme inferred from its homology with phage T4 lysozyme. Implications for lysozyme evolution.
    Weaver LH; Rennell D; Poteete AR; Mathews BW
    J Mol Biol; 1985 Aug; 184(4):739-41. PubMed ID: 4046032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mutant T4 lysozyme displays five different crystal conformations.
    Faber HR; Matthews BW
    Nature; 1990 Nov; 348(6298):263-6. PubMed ID: 2234094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability.
    Dao-pin S; Söderlind E; Baase WA; Wozniak JA; Sauer U; Matthews BW
    J Mol Biol; 1991 Oct; 221(3):873-87. PubMed ID: 1942034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tolerance of T4 lysozyme to proline substitutions within the long interdomain alpha-helix illustrates the adaptability of proteins to potentially destabilizing lesions.
    Sauer UH; San DP; Matthews BW
    J Biol Chem; 1992 Feb; 267(4):2393-9. PubMed ID: 1733941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation between hen egg white lysozyme and bacteriophage T4 lysozyme: evolutionary implications.
    Matthews BW; Remington SJ; Grütter MG; Anderson WF
    J Mol Biol; 1981 Apr; 147(4):545-58. PubMed ID: 7277500
    [No Abstract]   [Full Text] [Related]  

  • 19. Site-specific incorporation of novel backbone structures into proteins.
    Ellman JA; Mendel D; Schultz PG
    Science; 1992 Jan; 255(5041):197-200. PubMed ID: 1553546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational regulation of expression of the bacteriophage T4 lysozyme gene.
    McPheeters DS; Christensen A; Young ET; Stormo G; Gold L
    Nucleic Acids Res; 1986 Jul; 14(14):5813-26. PubMed ID: 3526285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.