These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 7078118)

  • 21. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Static indentation of anisotropic biomaterials using axially asymmetric indenters--a computational study.
    Bischoff JE
    J Biomech Eng; 2004 Aug; 126(4):498-505. PubMed ID: 15543868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A numerical model of the load transmission in the tibio-femoral contact area.
    Schreppers GJ; Sauren AA; Huson A
    Proc Inst Mech Eng H; 1990; 204(1):53-9. PubMed ID: 2353993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A two-parameter model of the effective elastic tensor for cortical bone.
    Grimal Q; Rus G; Parnell WJ; Laugier P
    J Biomech; 2011 May; 44(8):1621-5. PubMed ID: 21453920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study.
    Perillo-Marcone A; Taylor M
    J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electric and dielectric properties of wet human cancellous bone as a function of frequency.
    Saha S; Williams PA
    Ann Biomed Eng; 1989; 17(2):143-58. PubMed ID: 2729682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of failure in cancellous bone using extended finite element method.
    Salem M; Westover L; Adeeb S; Duke K
    Proc Inst Mech Eng H; 2020 Sep; 234(9):988-999. PubMed ID: 32605523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Connectivity and the elastic properties of cancellous bone.
    Kabel J; Odgaard A; van Rietbergen B; Huiskes R
    Bone; 1999 Feb; 24(2):115-20. PubMed ID: 9951779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elasticity-density and viscoelasticity-density relationships at the tibia mid-diaphysis assessed from resonant ultrasound spectroscopy measurements.
    Bernard S; Schneider J; Varga P; Laugier P; Raum K; Grimal Q
    Biomech Model Mechanobiol; 2016 Feb; 15(1):97-109. PubMed ID: 26070349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-trabecula building block for large-scale finite element models of cancellous bone.
    Dagan D; Be'ery M; Gefen A
    Med Biol Eng Comput; 2004 Jul; 42(4):549-56. PubMed ID: 15320466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of structural failure of tibial bone models under physiological loads: effect of CT density-modulus relationships.
    Tuncer M; Hansen UN; Amis AA
    Med Eng Phys; 2014 Aug; 36(8):991-7; discussion 991. PubMed ID: 24907128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shape and function of the diaphysis of the human tibia.
    Cristofolini L; Angeli E; Juszczyk JM; Juszczyk MM
    J Biomech; 2013 Jul; 46(11):1882-92. PubMed ID: 23726289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element analysis of the implanted proximal tibia: a relationship between the initial cancellous bone stresses and implant migration.
    Taylor M; Tanner KE; Freeman MA
    J Biomech; 1998 Apr; 31(4):303-10. PubMed ID: 9672083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Age-related changes in bone strength from HR-pQCT derived microarchitectural parameters with an emphasis on the role of cortical porosity.
    Vilayphiou N; Boutroy S; Sornay-Rendu E; Van Rietbergen B; Chapurlat R
    Bone; 2016 Feb; 83():233-240. PubMed ID: 26525593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strength indices from pQCT imaging predict up to 85% of variance in bone failure properties at tibial epiphysis and diaphysis.
    Kontulainen SA; Johnston JD; Liu D; Leung C; Oxland TR; McKay HA
    J Musculoskelet Neuronal Interact; 2008; 8(4):401-9. PubMed ID: 19147978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the dependence of the elasticity and strength of cancellous bone on apparent density.
    Rice JC; Cowin SC; Bowman JA
    J Biomech; 1988; 21(2):155-68. PubMed ID: 3350829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The geometrical properties of human femur and tibia and their importance for the mechanical behaviour of these bone structures.
    Martens M; Van Audekercke R; De Meester P; Mulier JC
    Arch Orthop Trauma Surg (1978); 1981; 98(2):113-20. PubMed ID: 7294986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atlas of Human Skeleton Hardness Obtained Using the Micro-indentation Technique.
    Li S; Wang JZ; Yin B; Hu ZS; Zhang XJ; Wu W; Liu GB; Liu YK; Fu L; Zhang YZ
    Orthop Surg; 2021 Jun; 13(4):1417-1422. PubMed ID: 33973714
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of dynamically adapting anisotropic material properties of bone under cyclic loading.
    Besdo S
    J Biomech; 2011 Jan; 44(2):272-6. PubMed ID: 21040919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indentation stiffness of the cancellous bone in the distal human tibia.
    Aitken GK; Bourne RB; Finlay JB; Rorabeck CH; Andreae PR
    Clin Orthop Relat Res; 1985 Dec; (201):264-70. PubMed ID: 4064414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.