These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7078121)

  • 1. A comparison of steady and pulsatile flow in symmetrically branched tubes.
    Walburn FJ; Stein PD
    J Biomech Eng; 1982 Feb; 104(1):66-8. PubMed ID: 7078121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The shear rate at the wall in a symmetrically branched tube simulating the aortic bifurcation.
    Walburn FJ; Stein PD
    Biorheology; 1982; 19(1/2):307-16. PubMed ID: 6212090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow characteristics in symmetrically branched tubes simulating the human aortic bifurcation.
    Walburn F; Stein P
    J Biomech Eng; 1980 Nov; 102(4):340-2. PubMed ID: 6965198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure drop and flow rate measurements in a human aortic bifurcation cast for steady and pulsatile flow.
    Klanchar M; Tarbell JM
    J Biomech; 1989; 22(5):491-500. PubMed ID: 2777824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow visualization studies in a mold of the normal human aorta and renal arteries.
    Liepsch D; Poll A; Strigberger J; Sabbah HN; Stein PD
    J Biomech Eng; 1989 Aug; 111(3):222-7. PubMed ID: 2779187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vortex generation in pulsatile flow through arterial bifurcation models including the human carotid artery.
    Fukushima T; Homma T; Harakawa K; Sakata N; Azuma T
    J Biomech Eng; 1988 Aug; 110(3):166-71. PubMed ID: 3172734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady and pulsatile flow distribution in a multiple branching network with physiological applications.
    Isabey D
    J Biomech; 1982; 15(5):395-404. PubMed ID: 7118954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemodynamic evaluation of embolic trajectory in an arterial bifurcation: an in-vitro experimental model.
    Bushi D; Grad Y; Einav S; Yodfat O; Nishri B; Tanne D
    Stroke; 2005 Dec; 36(12):2696-700. PubMed ID: 16269629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of branch flow ratio, angle, and Reynolds number effects on the pressure and flow fields in arterial branch models.
    Cho YI; Back LH; Crawford DW
    J Biomech Eng; 1985 Aug; 107(3):257-67. PubMed ID: 4046567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experiment on the pulsatile flow at transitional Reynolds numbers--the fluid dynamical meaning of the blood flow parameters in the aorta.
    Nakamura M; Sugiyama W; Haruna M
    J Biomech Eng; 1993 Nov; 115(4A):412-7. PubMed ID: 8309236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Reynolds number and flow division on patterns of haemodynamic wall shear stress near branch points in the descending thoracic aorta.
    Kazakidi A; Sherwin SJ; Weinberg PD
    J R Soc Interface; 2009 Jun; 6(35):539-48. PubMed ID: 18812285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association between secondary flow in models of the aorto-celiac junction and subendothelial macrophages in the normal rabbit.
    Malinauskas RA; Sarraf P; Barber KM; Truskey GA
    Atherosclerosis; 1998 Sep; 140(1):121-34. PubMed ID: 9733223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The flow field along the entire length of mouse aorta and primary branches.
    Huo Y; Guo X; Kassab GS
    Ann Biomed Eng; 2008 May; 36(5):685-99. PubMed ID: 18299987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of moving flow separation in pulsatile flow and the degree of stenosis by power of Doppler shift signals.
    Tamura T; Fronek A
    Circ Res; 1990 Jul; 67(1):166-74. PubMed ID: 2194690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shock waves in fluid-filled distensible tubes.
    Rudinger G
    J Biomech Eng; 1980 Feb; 102(1):23-7. PubMed ID: 7382449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow in tubes and arteries--a comparison.
    Liepsch DW
    Biorheology; 1986; 23(4):395-433. PubMed ID: 3779064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of steady flow in a model of the aortic bifurcation.
    Thiriet M; Pares C; Saltel E; Hecht F
    J Biomech Eng; 1992 Feb; 114(1):40-9. PubMed ID: 1491585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of steady and pulsatile flow near the ventral and dorsal walls of casts of human aortic bifurcations.
    Deters OJ; Mark FF; Bargeron CB; Friedman MH; Hutchins GM
    J Biomech Eng; 1984 Feb; 106(1):79-82. PubMed ID: 6727318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas transport in serpentine microporous tubes under steady and pulsatile blood flow conditions.
    Tanishita K; Ujihira M; Watabe A; Nakano K; Richardson PD; Galletti PM
    J Biomech Eng; 1991 May; 113(2):223-9. PubMed ID: 1875697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.