These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 7078461)
1. Light-dependent delta pH and membrane potential changes in halobacterial vesicles coupled to sodium transport. Kamo N; Racanelli T; Packer L Membr Biochem; 1982; 4(3):175-88. PubMed ID: 7078461 [TBL] [Abstract][Full Text] [Related]
2. Functional comparison of DCCD-sensitive Na+/H+ antiporter in Halobacterium halobium with monensin. Murakami N; Konishi T Biochimie; 1988 Jun; 70(6):819-26. PubMed ID: 2844306 [TBL] [Abstract][Full Text] [Related]
3. Existence of electrogenic hydrogen ion/sodium ion antiport in Halobacterium halobium cell envelope vesicles. Lanyi JK; MacDonald RE Biochemistry; 1976 Oct; 15(21):4608-14. PubMed ID: 9978 [TBL] [Abstract][Full Text] [Related]
4. Light-dependent cation gradients and electrical potential in Halobacterium halobium cell envelope vesicles. Lanyi JK; MacDonald RE Fed Proc; 1977 May; 36(6):1824-7. PubMed ID: 15877 [TBL] [Abstract][Full Text] [Related]
5. Light-driven primary sodium ion transport in Halobacterium halobium membranes. Lanyi JK J Supramol Struct; 1980; 13(1):83-92. PubMed ID: 7442256 [TBL] [Abstract][Full Text] [Related]
6. Na+ transport via Na+/H+ antiport in Halobacterium halobium envelope vesicles. Luisi BF; Lanyi JK; Weber HJ FEBS Lett; 1980 Aug; 117(1):354-8. PubMed ID: 6250899 [TBL] [Abstract][Full Text] [Related]
7. Halorhodopsin is a light-driven chloride pump. Schobert B; Lanyi JK J Biol Chem; 1982 Sep; 257(17):10306-13. PubMed ID: 7107607 [TBL] [Abstract][Full Text] [Related]
8. Light-induced leucine transport in Halobacterium halobium envelope vesicles: a chemiosmotic system. MacDonald RE; Lanyi LK Biochemistry; 1975 Jul; 14(13):2882-9. PubMed ID: 50859 [TBL] [Abstract][Full Text] [Related]
9. Transient proton inflows during illumination of anaerobic Halobacterium halobium cells. Helgerson SL; Stoeckenius W Arch Biochem Biophys; 1985 Sep; 241(2):616-27. PubMed ID: 2994571 [TBL] [Abstract][Full Text] [Related]
10. DCCD-sensitive Na+-transport in the membrane vesicles of Halobacterium halobium. Murakami N; Konishi T J Biochem; 1988 Feb; 103(2):231-6. PubMed ID: 3372488 [TBL] [Abstract][Full Text] [Related]
11. DCCD-sensitive, Na+-dependent H+-influx process coupled to membrane potential formation in membrane vesicles of Halobacterium halobium. Murakami N; Konishi T J Biochem; 1985 Oct; 98(4):897-907. PubMed ID: 2416740 [TBL] [Abstract][Full Text] [Related]
12. Primary and secondary chloride transport in Halobacterium halobium. Duschl A; Wagner G J Bacteriol; 1986 Nov; 168(2):548-52. PubMed ID: 3782015 [TBL] [Abstract][Full Text] [Related]
13. Coupling between the bacteriorhodopsin photocycle and the protonmotive force in Halobacterium halobium cell envelope vesicles. III. Time-resolved increase in the transmembrane electric potential and modeling of the associated ion fluxes. Helgerson SL; Mathew MK; Bivin DB; Wolber PK; Heinz E; Stoeckenius W Biophys J; 1985 Nov; 48(5):709-19. PubMed ID: 4074833 [TBL] [Abstract][Full Text] [Related]
14. Light-induced membrane potential and pH gradient in Halobacterium halobium envelope vesicles. Renthal R; Lanyi JK Biochemistry; 1976 May; 15(10):2136-43. PubMed ID: 6040 [TBL] [Abstract][Full Text] [Related]
15. Light-induced membrane-potential increase, ATP synthesis, and proton uptake in Halobacterium halobium, R1mR catalyzed by halorhodopsin: Effects of N,N'-dicyclohexylcarbodiimide, triphenyltin chloride, and 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). Mukohata Y; Kaji Y Arch Biochem Biophys; 1981 Jan; 206(1):72-6. PubMed ID: 6260033 [No Abstract] [Full Text] [Related]
16. Control of transmembrane ion fluxes to select halorhodopsin-deficient and other energy-transduction mutants of Halobacterium halobium. Spudich EN; Spudich JL Proc Natl Acad Sci U S A; 1982 Jul; 79(14):4308-12. PubMed ID: 6289299 [TBL] [Abstract][Full Text] [Related]