These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7079111)

  • 1. An investigation of kinematic and kinetic variables for the description of prosthetic gait using the ENOCH system.
    Oberg K; Lanshammar H
    Prosthet Orthot Int; 1982 Apr; 6(1):43-7. PubMed ID: 7079111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation of mechanical energy levels for normal and prosthetic gait.
    Lanshammar H
    Prosthet Orthot Int; 1982 Aug; 6(2):97-102. PubMed ID: 7110922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the contralateral limb in below-knee amputee gait.
    Hurley GR; McKenney R; Robinson M; Zadravec M; Pierrynowski MR
    Prosthet Orthot Int; 1990 Apr; 14(1):33-42. PubMed ID: 2192355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of limb alignment on the gait of above-knee amputees.
    Yang L; Solomonidis SE; Spence WD; Paul JP
    J Biomech; 1991; 24(11):981-97. PubMed ID: 1761584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait kinematics in below-knee child amputees: a force plate analysis.
    Lewallen R; Dyck G; Quanbury A; Ross K; Letts M
    J Pediatr Orthop; 1986; 6(3):291-8. PubMed ID: 3711320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can high-functioning amputees with state-of-the-art prosthetics walk normally? A kinematic and dynamic study of 40 individuals.
    Jarvis HL; Reeves ND; Twiste M; Phillip RD; Etherington J; Bennett AN
    Ann Phys Rehabil Med; 2021 Jan; 64(1):101395. PubMed ID: 32450271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes.
    Ernst M; Altenburg B; Schmalz T; Kannenberg A; Bellmann M
    J Neuroeng Rehabil; 2022 Jan; 19(1):9. PubMed ID: 35090505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sound side joint contact forces in below knee amputee gait with an ESAR prosthetic foot.
    Karimi MT; Salami F; Esrafilian A; Heitzmann DWW; Alimusaj M; Putz C; Wolf SI
    Gait Posture; 2017 Oct; 58():246-251. PubMed ID: 28822943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait motion analysis in the unrestrained condition of trans-femoral amputee with a prosthetic limb.
    Hayashi Y; Tsujiuchi N; Koizumi T; Uno R; Matsuda Y; Tsuchiya Y; Inoue Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3040-3. PubMed ID: 23366566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees.
    Nolan L; Lees A
    Prosthet Orthot Int; 2000 Aug; 24(2):117-25. PubMed ID: 11061198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional evaluation by gait analysis of various ankle-foot assemblies used by below-knee amputees.
    Mizuno N; Aoyama T; Nakajima A; Kasahara T; Takami K
    Prosthet Orthot Int; 1992 Dec; 16(3):174-82. PubMed ID: 1491951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-distance walking effects on trans-tibial amputees compensatory gait patterns and implications on prosthetic designs and training.
    Yeung LF; Leung AK; Zhang M; Lee WC
    Gait Posture; 2012 Feb; 35(2):328-33. PubMed ID: 22055554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait adjustments in obstacle crossing, gait initiation and gait termination after a recent lower limb amputation.
    Vrieling AH; van Keeken HG; Schoppen T; Hof AL; Otten B; Halbertsma JP; Postema K
    Clin Rehabil; 2009 Jul; 23(7):659-71. PubMed ID: 19470553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of footwear mass on the gait patterns of unilateral below-knee amputees.
    Donn JM; Porter D; Roberts VC
    Prosthet Orthot Int; 1989 Dec; 13(3):140-4. PubMed ID: 2608421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of transverse prosthetic alignment changes on socket reaction moments during gait in individuals with transtibial amputation.
    Hashimoto H; Kobayashi T; Gao F; Kataoka M; Orendurff MS; Okuda K
    Gait Posture; 2018 Sep; 65():8-14. PubMed ID: 30558951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical responses of young adults with unilateral transfemoral amputation using two types of mechanical stance control prosthetic knee joints.
    Andrysek J; García D; Rozbaczylo C; Alvarez-Mitchell C; Valdebenito R; Rotter K; Wright FV
    Prosthet Orthot Int; 2020 Oct; 44(5):314-322. PubMed ID: 32389076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-amputated limb muscle coordination of unilateral transfemoral amputees.
    Xu Z; Yan F; Chen TL; Zhang M; Wong DW; Jiang WT; Fan YB
    J Biomech; 2021 Jan; 115():110155. PubMed ID: 33326898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A characterisation of established unilateral transfemoral amputee gait using 3D kinematics, kinetics and oxygen consumption measures.
    Carse B; Scott H; Brady L; Colvin J
    Gait Posture; 2020 Jan; 75():98-104. PubMed ID: 31645007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prosthetic gait of unilateral transfemoral amputees: a kinematic study.
    Jaegers SM; Arendzen JH; de Jongh HJ
    Arch Phys Med Rehabil; 1995 Aug; 76(8):736-43. PubMed ID: 7632129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of prosthetic alignment on hip and knee joint kinetics in individuals with transfemoral amputation.
    Zhang T; Bai X; Liu F; Ji R; Fan Y
    Gait Posture; 2020 Feb; 76():85-91. PubMed ID: 31743872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.