These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7079111)

  • 21. Dynamic elastic response prostheses alter approach angles and ground reaction forces but not leg stiffness during a start-stop task.
    Haber CK; Ritchie LJ; Strike SC
    Hum Mov Sci; 2018 Apr; 58():337-346. PubMed ID: 29269103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A methodology for studying the effects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait.
    van der Linden ML; Solomonidis SE; Spence WD; Li N; Paul JP
    J Biomech; 1999 Sep; 32(9):877-89. PubMed ID: 10460124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Joint contact forces can be reduced by improving joint moment symmetry in below-knee amputee gait simulations.
    Koelewijn AD; van den Bogert AJ
    Gait Posture; 2016 Sep; 49():219-225. PubMed ID: 27459416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of direct measurement versus cadaver estimates of anthropometry in the calculation of joint moments during above-knee prosthetic gait in pediatrics.
    Goldberg EJ; Requejo PS; Fowler EG
    J Biomech; 2008; 41(3):695-700. PubMed ID: 18031751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of five prosthetic feet on the gait and loading of the sound limb in dysvascular below-knee amputees.
    Snyder RD; Powers CM; Fontaine C; Perry J
    J Rehabil Res Dev; 1995 Nov; 32(4):309-15. PubMed ID: 8770795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of prosthetic foot alignment on trans-tibial amputee gait.
    Fridman A; Ona I; Isakov E
    Prosthet Orthot Int; 2003 Apr; 27(1):17-22. PubMed ID: 12812324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rehabilitation in limb deficiency. 1. Gait and motion analysis.
    Czerniecki JM
    Arch Phys Med Rehabil; 1996 Mar; 77(3 Suppl):S3-8. PubMed ID: 8599543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The strategies to regulate and to modulate the propulsive forces during gait initiation in lower limb amputees.
    Michel V; Chong RK
    Exp Brain Res; 2004 Oct; 158(3):356-65. PubMed ID: 15167976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved ankle-foot system for above-knee amputees.
    James KB; Stein RB
    Am J Phys Med; 1986 Dec; 65(6):301-14. PubMed ID: 3789130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stride kinematics and knee joint kinetics of child amputee gait.
    Hoy MG; Whiting WC; Zernicke RF
    Arch Phys Med Rehabil; 1982 Feb; 63(2):74-82. PubMed ID: 7059274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of mechanical and metabolic factors in the gait of congenital below knee amputees. A comparison of the SACH and Seattle feet.
    Colborne GR; Naumann S; Longmuir PE; Berbrayer D
    Am J Phys Med Rehabil; 1992 Oct; 71(5):272-8. PubMed ID: 1388973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Planar covariation of elevation angles in prosthetic gait.
    Leurs F; Bengoetxea A; Cebolla AM; De Saedeleer C; Dan B; Cheron G
    Gait Posture; 2012 Apr; 35(4):647-52. PubMed ID: 22257927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The biomechanical response of persons with transfemoral amputation to variations in prosthetic knee alignment during level walking.
    Koehler-McNicholas SR; Lipschutz RD; Gard SA
    J Rehabil Res Dev; 2016; 53(6):1089-1106. PubMed ID: 28355034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of below-knee suspension systems: effect on gait.
    Wirta RW; Golbranson FL; Mason R; Calvo K
    J Rehabil Res Dev; 1990; 27(4):385-96. PubMed ID: 2089149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lower limb amputee gait characteristics on a specifically designed test ramp: Preliminary results of a biomechanical comparison of two prosthetic foot concepts.
    Schmalz T; Altenburg B; Ernst M; Bellmann M; Rosenbaum D
    Gait Posture; 2019 Feb; 68():161-167. PubMed ID: 30497035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Function of prosthesis components in lower limb amputees with bone-anchored percutaneous implants : Biomechanical aspects].
    Blumentritt S
    Unfallchirurg; 2017 May; 120(5):385-394. PubMed ID: 28280845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic differences between level walking and ramp descent in individuals with unilateral transfemoral amputation using a prosthetic knee without a stance control mechanism.
    Okita Y; Yamasaki N; Nakamura T; Kubo T; Mitsumoto A; Akune T
    Gait Posture; 2018 Jun; 63():80-85. PubMed ID: 29723652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Joint moment and muscle power output characteristics of below knee amputees during running: the influence of energy storing prosthetic feet.
    Czerniecki JM; Gitter A; Munro C
    J Biomech; 1991; 24(1):63-75. PubMed ID: 2026634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking.
    Gitter A; Czerniecki JM; DeGroot DM
    Am J Phys Med Rehabil; 1991 Jun; 70(3):142-8. PubMed ID: 2039616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.