These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7079379)

  • 1. Effects of lithium on circadian cycles in food and water intake, urinary concentration and body weight in rats.
    Christensen S; Agner T
    Physiol Behav; 1982 Apr; 28(4):635-40. PubMed ID: 7079379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of lithium on water intake and renal concentrating ability in rats with vasopressin-deficient diabetes insipidus (Brattleboro strain).
    Christensen S
    Pflugers Arch; 1983 Feb; 396(2):106-9. PubMed ID: 6835812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal effects of lithium administration in rats: alterations in water and electrolyte metabolism and the response to vasopressin and cyclic-adenosine monophosphate during prolonged administration.
    Martines-Maldonado M; Stavroulaki-Tsapara A; Tsaparas N; Suki WN; Eknoyan G
    J Lab Clin Med; 1975 Sep; 86(3):445-61. PubMed ID: 168279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DDAVP (1-desamino-8-D-arginine-vasopressin) treatment of lithium-induced polyuria in the rat.
    Christensen S
    Scand J Clin Lab Invest; 1980 Apr; 40(2):151-7. PubMed ID: 7256183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of the rat kidney to altered water intake and urine concentration.
    Bankir L; Fischer C; Fischer S; Jukkala K; Specht HC; Kriz W
    Pflugers Arch; 1988 Jul; 412(1-2):42-53. PubMed ID: 3174386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amygdalar injections of vasopressin and its antagonist do not disrupt the circadian rhythm of food and water intake in the rat.
    Reghunandanan V; Marya RK; Maini BK; Reghunandanan R
    Indian J Physiol Pharmacol; 1988; 32(2):114-9. PubMed ID: 3182058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats.
    Christensen S; Kusano E; Yusufi AN; Murayama N; Dousa TP
    J Clin Invest; 1985 Jun; 75(6):1869-79. PubMed ID: 2989335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative mechanisms involved in chronic antidiuretic response to bendroflumethiazide in rats with lithium-induced nephrogenic diabetes insipidus.
    Moosavi SM; Karimi Z
    Acta Physiol Hung; 2014 Mar; 101(1):88-102. PubMed ID: 24631797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium-induced nephrogenic diabetes insipidus: in vivo and in vitro studies.
    Singer I; Rotenberg D; Puschett JB
    J Clin Invest; 1972 May; 51(5):1081-91. PubMed ID: 4341501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chronic lithium treatment on twenty four hour variation in plasma and red blood cell lithium and sodium concentrations, drinking behavior, body weight, kidney weight, and corticosterone levels.
    Seggie J; Werstiuk ES; Grota L
    Prog Neuropsychopharmacol Biol Psychiatry; 1982; 6(4-6):455-8. PubMed ID: 6298889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ingestive behaviors of the rat deficient in vasopressin synthesis (Brattleboro strain). Effect of chronic treatment by dDAVP.
    Burlet A; Desor D; Max JP; Nicolas JP; Krafft B; Burlet C
    Physiol Behav; 1990 Dec; 48(6):813-9. PubMed ID: 2087512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian rhythms of food and water intake and urine excretion in diabetic rats.
    Velasco Plaza A; G-Granda T; Cachero MT
    Physiol Behav; 1993 Oct; 54(4):665-70. PubMed ID: 8248343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of chronic administration of naltrexone on appetite and water exchange in rats.
    Lang IM; Strahlendorf JC; Strahlendorf HK; Lutherer LO; Barnes CD
    Pharmacol Biochem Behav; 1982 Jun; 16(6):909-13. PubMed ID: 7111349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chronic estrogen treatment on water exchange in rats.
    Carlberg KA; Fregly MJ; Fahey M
    Am J Physiol; 1984 Jul; 247(1 Pt 1):E101-10. PubMed ID: 6742184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal responses to chronic cold exposure.
    Sun Z; Zhang Z; Cade R
    Can J Physiol Pharmacol; 2003 Jan; 81(1):22-7. PubMed ID: 12665254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal dehydration-induced thirst in lithium-treated rats.
    Barney CC; Kurylo DM; Grobe JL
    Pharmacol Biochem Behav; 2003 May; 75(2):341-7. PubMed ID: 12873625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium and the antidiuretic hormone.
    MacNeil S; Jennings G; Eastwood PR; Paschalis C; Jenner FA
    Br J Clin Pharmacol; 1976 Apr; 3(2):305-13. PubMed ID: 788747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus.
    Zhang Y; Peti-Peterdi J; Müller CE; Carlson NG; Baqi Y; Strasburg DL; Heiney KM; Villanueva K; Kohan DE; Kishore BK
    J Am Soc Nephrol; 2015 Dec; 26(12):2978-87. PubMed ID: 25855780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium-induced renal loss of sodium in lithium-treated rats.
    Olesen OV; Thomsen K
    Acta Pharmacol Toxicol (Copenh); 1980 Mar; 46(3):178-84. PubMed ID: 6987825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of D- and/or L-aspartic acids on feeding, drinking, urine outflow and core temperature.
    Koyuncuoğlu H; Berkman K
    Pharmacol Biochem Behav; 1982 Dec; 17(6):1265-9. PubMed ID: 7163357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.