These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 7080030)
21. Membrane-bound conformation and phospholipid components modulate membrane-damaging activity of Taiwan cobra cardiotoxins. Kao PH; Lin SR; Wu MJ; Chang LS Toxicon; 2009 Apr; 53(5):512-8. PubMed ID: 19673097 [TBL] [Abstract][Full Text] [Related]
22. Modification of substrate inhibition of synaptosomal acetylcholinesterase by cardiotoxins. Ranaei-Siadat SO; Riazi GH; Sadeghi M; Chang LS; Lin SR; Eghtesadi-Araghi P; Hakimelahi GH; Moosavi-Movahedi AA J Biochem Mol Biol; 2004 May; 37(3):330-8. PubMed ID: 15469715 [TBL] [Abstract][Full Text] [Related]
23. Hemolytic activity of thionin from Pyrularia pubera nuts and snake venom toxins of Naja naja species: Pyrularia thionin and snake venom cardiotoxin compete for the same membrane site. Osorio e Castro VR; Vernon LP Toxicon; 1989; 27(5):511-7. PubMed ID: 2749751 [TBL] [Abstract][Full Text] [Related]
24. Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra)--identification of structural features important for the lethal action of snake venom cardiotoxins. Jayaraman G; Kumar TK; Tsai CC; Srisailam S; Chou SH; Ho CL; Yu C Protein Sci; 2000 Apr; 9(4):637-46. PubMed ID: 10794406 [TBL] [Abstract][Full Text] [Related]
25. Penetration of a cardiotoxin into cardiolipin model membranes and its implications on lipid organization. Batenburg AM; Bougis PE; Rochat H; Verkleij AJ; de Kruijff B Biochemistry; 1985 Dec; 24(25):7101-10. PubMed ID: 4084565 [TBL] [Abstract][Full Text] [Related]
27. Comparison of the hemolytic activity and solution structures of two snake venom cardiotoxin analogues which only differ in their N-terminal amino acid. Jang JY; Krishnaswamy T; Kumar S; Jayaraman G; Yang PW; Yu C Biochemistry; 1997 Dec; 36(48):14635-41. PubMed ID: 9398182 [TBL] [Abstract][Full Text] [Related]
28. Roles of lysine residues and N-terminal alpha-amino group in membrane-damaging activity of Taiwan cobra cardiotoxin 3 toward anionic and zwitterionic phospholipid vesicles. Chiou YL; Kao PH; Liu WH; Lin SR; Chang LS Toxicon; 2010; 55(2-3):256-64. PubMed ID: 19647762 [TBL] [Abstract][Full Text] [Related]
30. Use of erythrocyte hemolysis kinetics in the purification of complex cardiotoxin mixtures. Zusman N; Cafmeyer N; Hudson RA Toxicon; 1982; 20(2):517-20. PubMed ID: 7080058 [TBL] [Abstract][Full Text] [Related]
31. Delineating residues for haemolytic activities of snake venom cardiotoxin 1 from Naja naja as probed by molecular dynamics simulations and in vitro validations. Gorai B; Sivaraman T Int J Biol Macromol; 2017 Feb; 95():1022-1036. PubMed ID: 27984143 [TBL] [Abstract][Full Text] [Related]
32. Membrane-Disrupting Activity of Cobra Cytotoxins Is Determined by Configuration of the N-Terminal Loop. Dubovskii PV; Ignatova AA; Alekseeva AS; Starkov VG; Boldyrev IA; Feofanov AV; Utkin YN Toxins (Basel); 2022 Dec; 15(1):. PubMed ID: 36668826 [TBL] [Abstract][Full Text] [Related]
33. Dynamics of the active loop of snake toxins as probed by time-resolved polarized tryptophan fluorescence. Blandin P; Mérola F; Brochon JC; Trémeau O; Ménez A Biochemistry; 1994 Mar; 33(9):2610-9. PubMed ID: 8117723 [TBL] [Abstract][Full Text] [Related]
34. Do cardiotoxins possess a functional site? Structural and chemical modification studies reveal the functional site of the cardiotoxin from Naja nigricollis. Ménez A; Gatineau E; Roumestand C; Harvey AL; Mouawad L; Gilquin B; Toma F Biochimie; 1990 Aug; 72(8):575-88. PubMed ID: 2126462 [TBL] [Abstract][Full Text] [Related]
36. Crystal structure of cardiotoxin V from Taiwan cobra venom: pH-dependent conformational change and a novel membrane-binding motif identified in the three-finger loops of P-type cardiotoxin. Sun YJ; Wu WG; Chiang CM; Hsin AY; Hsiao CD Biochemistry; 1997 Mar; 36(9):2403-13. PubMed ID: 9054545 [TBL] [Abstract][Full Text] [Related]
37. Structure and organization of the cardiotoxin genes in Naja naja sputatrix. Lachumanan R; Armugam A; Tan CH; Jeyaseelan K FEBS Lett; 1998 Aug; 433(1-2):119-24. PubMed ID: 9738945 [TBL] [Abstract][Full Text] [Related]
38. Determination of the nuclear-magnetic-resonance solution structure of cardiotoxin CTX IIb from Naja mossambica mossambica. O'Connell JF; Bougis PE; Wüthrich K Eur J Biochem; 1993 May; 213(3):891-900. PubMed ID: 8504828 [TBL] [Abstract][Full Text] [Related]
39. Effect of phospholipase A on actions of cobra venom cardiotoxins on erythrocytes and skeletal muscle. Harvey AL; Hider RC; Khader F Biochim Biophys Acta; 1983 Feb; 728(2):215-21. PubMed ID: 6830777 [TBL] [Abstract][Full Text] [Related]
40. Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action. Patel HV; Vyas AA; Vyas KA; Liu YS; Chiang CM; Chi LM; Wu Wg J Biol Chem; 1997 Jan; 272(3):1484-92. PubMed ID: 8999818 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]