These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 7081449)

  • 1. Na+-induced intestinal interstitial hyperosmolality and vascular responses during absorptive hyperemia.
    Bohlen HG
    Am J Physiol; 1982 May; 242(5):H785-9. PubMed ID: 7081449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rat intestinal lymph osmolarity during glucose and oleic acid absorption.
    Bohlen HG; Unthank JL
    Am J Physiol; 1989 Sep; 257(3 Pt 1):G438-46. PubMed ID: 2782414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium hyperosmolarity of intestinal lymph causes arteriolar vasodilation in part mediated by EDRF.
    Steenbergen JM; Bohlen HG
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H323-8. PubMed ID: 8342649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of a lymphatic system in glucose absorption and the accompanying microvascular hyperemia.
    Steenbergen JM; Lash JM; Bohlen HG
    Am J Physiol; 1994 Oct; 267(4 Pt 1):G529-35. PubMed ID: 7943318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of hyperosmolality to glucose-induced intestinal hyperemia.
    Proctor KG
    Am J Physiol; 1985 May; 248(5 Pt 1):G521-5. PubMed ID: 3993781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal tissue PO2 and microvascular responses during glucose exposure.
    Bohlen HG
    Am J Physiol; 1980 Feb; 238(2):H164-71. PubMed ID: 7361909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal hyperemia in experimental diabetes mellitus.
    Korthuis RJ; Benoit JN; Kvietys PR; Laughlin MH; Taylor AE; Granger DN
    Am J Physiol; 1987 Jul; 253(1 Pt 1):G26-32. PubMed ID: 2955704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal mucosal oxygenation influences absorptive hyperemia.
    Bohlen HG
    Am J Physiol; 1980 Oct; 239(4):H489-H493. PubMed ID: 7425141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Luminal hyperosmolarity decreases Na transport and impairs barrier function of sheep rumen epithelium.
    Schweigel M; Freyer M; Leclercq S; Etschmann B; Lodemann U; Böttcher A; Martens H
    J Comp Physiol B; 2005 Nov; 175(8):575-91. PubMed ID: 16177895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na microelectrode study of pathways of Na entry into Amphiuma intestinal absorptive cells.
    White JF; Ellingsen D; Mayer S
    Am J Physiol; 1987 May; 252(5 Pt 1):C505-14. PubMed ID: 3578503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of sodium and glucose for the establishment of a villous tissue hyperosmolality by the intestinal countercurrent multiplier.
    Hallbäck DA; Jodal M; Lundgren O
    Acta Physiol Scand; 1979 Sep; 107(1):89-96. PubMed ID: 525371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of sugars and amino acids on amphibian intestinal Cl- transport and intracellular Na+, K+, and Cl- activity.
    White JF; Burnup K; Ellingsen D
    Am J Physiol; 1986 Jan; 250(1 Pt 1):G109-17. PubMed ID: 3942212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient-induced changes in intestinal blood flow in the dog.
    Chou CC; Coatney RW
    Br Vet J; 1994; 150(5):423-37. PubMed ID: 7953577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intestinal microcirculatory changes during fat absorption and the effect of cholecystokinin inhibitor.
    Miura S; Tashiro H; Kurose I; Suematsu M; Serizawa H; Sekizuka E; Nagata H; Yoshioka M; Tsuchiya M
    Am J Physiol; 1992 Mar; 262(3 Pt 1):G399-404. PubMed ID: 1550231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determinants of resting and passive intestinal vascular pressures in rat and rabbit.
    Bohlen HG
    Am J Physiol; 1987 Nov; 253(5 Pt 1):G587-95. PubMed ID: 3688226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of increased vessel wall nitric oxide concentrations during intestinal absorption.
    Bohlen HG
    Am J Physiol; 1998 Aug; 275(2):H542-50. PubMed ID: 9683443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible mechanisms for the initiation and maintenance of postprandial intestinal hyperemia.
    Gallavan RH; Chou CC
    Am J Physiol; 1985 Sep; 249(3 Pt 1):G301-8. PubMed ID: 3898869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose-induced intestinal hyperemia is mediated by nitric oxide.
    Matheson PJ; Wilson MA; Spain DA; Harris PD; Anderson GL; Garrison RN
    J Surg Res; 1997 Oct; 72(2):146-54. PubMed ID: 9356236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capsaicin-sensitive nerves modulate reactive hyperemia in rat gut.
    Hottenstein OD; Pawlik WW; Remak G; Jacobson ED
    Proc Soc Exp Biol Med; 1992 Mar; 199(3):311-20. PubMed ID: 1347170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of adenosine receptor subtypes in rat jejunum in unfed state versus glucose-induced hyperemia.
    Li N; Harris PD; Zakaria el R; Matheson PJ; Garrison RN
    J Surg Res; 2007 May; 139(1):51-60. PubMed ID: 17291535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.