BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 7082315)

  • 1. Transfer of 1-pyrroline-5-carboxylate as oxidizing potential from hepatocytes to erythrocytes.
    Hagedorn CH; Yeh GC; Phang JM
    Biochem J; 1982 Jan; 202(1):31-9. PubMed ID: 7082315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of reducing equivalents into mitochondria by the interconversions of proline and delta 1-pyrroline-5-carboxylate.
    Hagedorn CH; Phang JM
    Arch Biochem Biophys; 1983 Aug; 225(1):95-101. PubMed ID: 6688511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of the hexosemonophosphate-pentose pathway by pyrroline-5-carboxylate in cultured cells.
    Phang JM; Downing SJ; Yeh GC; Smith RJ; Williams JA; Hagedorn CH
    J Cell Physiol; 1982 Mar; 110(3):255-61. PubMed ID: 6896335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic transfer of hydride ions from NADPH to oxygen by the interconversions of proline and delta 1-pyrroline-5-carboxylate.
    Hagedorn CH; Phang JM
    Arch Biochem Biophys; 1986 Jul; 248(1):166-74. PubMed ID: 3729412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of a NADPH-linked delta 1-pyrroline-5-carboxylate-proline shuttle in a cell-free rat liver system.
    Hagedorn CH
    Biochim Biophys Acta; 1986 Oct; 884(1):11-7. PubMed ID: 3768405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of phosphoribosyl pyrophosphate and purine nucleotide production by pyrroline 5-carboxylate in human erythrocytes.
    Yeh GC; Phang JM
    J Biol Chem; 1988 Sep; 263(26):13083-9. PubMed ID: 2458343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The intercellular proline cycle.
    Phang JM; Yeh GC; Hagedorn CH
    Life Sci; 1981 Jan; 28(1):53-8. PubMed ID: 6894321
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of pyrroline-5-carboxylic acid on nucleotide metabolism in erythrocytes from normal and glucose-6-phosphate dehydrogenase-deficient subjects.
    Yeh GC; Roth EF; Phang JM; Harris SC; Nagel RL; Rinaldi A
    J Biol Chem; 1984 May; 259(9):5454-8. PubMed ID: 6201483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assay and subcellular localization of pyrroline-5-carboxylate dehydrogenase in rat liver.
    Haslett MR; Pink D; Walters B; Brosnan ME
    Biochim Biophys Acta; 2004 Nov; 1675(1-3):81-6. PubMed ID: 15535970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrroline-5-carboxylate reductase in human erythrocytes.
    Yeh GC; Harris SC; Phang JM
    J Clin Invest; 1981 Apr; 67(4):1042-6. PubMed ID: 6894153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrroline-5-carboxylate stimulates the conversion of purine antimetabolites to their nucleotide forms by a redox-dependent mechanism.
    Yeh GC; Phang JM
    J Biol Chem; 1983 Aug; 258(16):9774-9. PubMed ID: 6193109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymes metabolizing delta1-pyrroline-5-carboxylate in rat tissues.
    Herzfeld A; Mezl VA; Knox WE
    Biochem J; 1977 Jul; 166(1):95-103. PubMed ID: 901423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-Proline nutrition and catabolism in Staphylococcus saprophyticus.
    Deutch CE
    Antonie Van Leeuwenhoek; 2011 May; 99(4):781-93. PubMed ID: 21253822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trypanosoma cruzi synthesizes proline via a Δ1-pyrroline-5-carboxylate reductase whose activity is fine-tuned by NADPH cytosolic pools.
    Marchese L; Olavarria K; Mantilla BS; Avila CC; Souza ROO; Damasceno FS; Elias MC; Silber AM
    Biochem J; 2020 May; 477(10):1827-1845. PubMed ID: 32315030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of the hexose-monophosphate pentose pathway by delta 1-pyrroline-5-carboxylic acid in human fibroblasts.
    Phang JM; Downing SJ; Yeh GC; Smith RJ; Williams JA
    Biochem Biophys Res Commun; 1979 Mar; 87(2):363-70. PubMed ID: 36077
    [No Abstract]   [Full Text] [Related]  

  • 16. Purified human erythrocyte pyrroline-5-carboxylate reductase. Preferential oxidation of NADPH.
    Merrill MJ; Yeh GC; Phang JM
    J Biol Chem; 1989 Jun; 264(16):9352-8. PubMed ID: 2722838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linkage of the HMP pathway to ATP generation by the proline cycle.
    Phang JM; Downing SJ; Yeh GC
    Biochem Biophys Res Commun; 1980 Mar; 93(2):462-70. PubMed ID: 6892988
    [No Abstract]   [Full Text] [Related]  

  • 18. The uptake of pyrroline 5-carboxylate. Group translocation mediating the transfer of reducing-oxidizing potential.
    Mixson AJ; Phang JM
    J Biol Chem; 1988 Aug; 263(22):10720-4. PubMed ID: 3392037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of glutamate to ornithine and proline: pyrroline-5-carboxylate, a possible modulator of arginine requirements.
    Jones ME
    J Nutr; 1985 Apr; 115(4):509-15. PubMed ID: 2858518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The metabolism of proline as microenvironmental stress substrate.
    Phang JM; Pandhare J; Liu Y
    J Nutr; 2008 Oct; 138(10):2008S-2015S. PubMed ID: 18806116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.