BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 7082315)

  • 21. The aqueous humor of rabbit contains high concentrations of pyrroline-5-carboxylate.
    Fleming GA; Steel G; Valle D; Granger AS; Phang JM
    Metabolism; 1986 Oct; 35(10):933-7. PubMed ID: 3093798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulation of ribose-5-phosphate and 5-phosphoribosyl-1-pyrophosphate generation by pyrroline-5-carboxylate in mouse liver in vivo: evidence for a regulatory role of ribose-5-phosphate availability in nucleotide synthesis.
    Boer P; Sperling O
    Biochem Med Metab Biol; 1991 Aug; 46(1):28-32. PubMed ID: 1718342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Schistosomiasis: proline production and release by ova.
    Isseroff H; Bock K; Owczarek A; Smith KR
    J Parasitol; 1983 Apr; 69(2):285-9. PubMed ID: 6687901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of an enzyme reducing pyrroline-5-carboxylate to proline.
    SMITH ME; GREENBERG DM
    Nature; 1956 Jun; 177(4520):1130. PubMed ID: 13334497
    [No Abstract]   [Full Text] [Related]  

  • 25. Activities of the pentose phosphate pathway and enzymes of proline metabolism in legume root nodules.
    Kohl DH; Lin JJ; Shearer G; Schubert KR
    Plant Physiol; 1990 Nov; 94(3):1258-64. PubMed ID: 16667826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. P5C as an Interface of Proline Interconvertible Amino Acids and Its Role in Regulation of Cell Survival and Apoptosis.
    Chalecka M; Kazberuk A; Palka J; Surazynski A
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative measurement of the L-type pentose phosphate cycle with [2-14C]glucose and [5-14C]glucose in isolated hepatocytes.
    Longenecker JP; Williams JF
    Biochem J; 1980 Jun; 188(3):859-65. PubMed ID: 7470039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidation of L-thiazolidine-4-carboxylate by delta1-pyrroline-5-carboxylate reductase in Escherichia coli.
    Deutch CE; Klarstrom JL; Link CL; Ricciardi DL
    Curr Microbiol; 2001 Jun; 42(6):442-6. PubMed ID: 11381339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proline metabolism in N2-fixing root nodules: energy transfer and regulation of purine synthesis.
    Kohl DH; Schubert KR; Carter MB; Hagedorn CH; Shearer G
    Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2036-40. PubMed ID: 3353366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stimulation of the hexose monophosphate pathway by pyrroline-5-carboxylate reductase in the lens.
    Shiono T; Kador PF; Kinoshita JH
    Exp Eye Res; 1985 Dec; 41(6):767-75. PubMed ID: 3841659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyrroline-5-carboxylate reductase and proline oxidase activity in the neonatal pig.
    Samuels SE; Acton KS; Ball RO
    J Nutr; 1989 Dec; 119(12):1999-2004. PubMed ID: 2621492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosynthesis of proline in Pseudomonas aeruginosa. Properties of gamma-glutamyl phosphate reductase and 1-pyrroline-5-carboxylate reductase.
    Krishna RV; Beilstein P; Leisinger T
    Biochem J; 1979 Jul; 181(1):223-30. PubMed ID: 114173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The stimulation of purine nucleotide production by pyrroline-5-carboxylic acid in human erythrocytes.
    Yeh GC; Phang JM
    Biochem Biophys Res Commun; 1981 Nov; 103(1):118-24. PubMed ID: 6172124
    [No Abstract]   [Full Text] [Related]  

  • 34. Ornithine-delta-aminotransferase and proline dehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response.
    Senthil-Kumar M; Mysore KS
    Plant Cell Environ; 2012 Jul; 35(7):1329-43. PubMed ID: 22321246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium.
    Zhang M; Huang H; Dai S
    Gene; 2014 Mar; 537(2):203-13. PubMed ID: 24434369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation and excretion of pyrrole-2-carboxylic acid. Whole animal and enzyme studies in the rat.
    Heacock AM; Adams E
    J Biol Chem; 1975 Apr; 250(7):2599-608. PubMed ID: 235519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. L-proline dehydrogenases in hyperthermophilic archaea: distribution, function, structure, and application.
    Kawakami R; Satomura T; Sakuraba H; Ohshima T
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):83-93. PubMed ID: 22089387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Δ-1-pyrroline-5-carboxylate derived biomarkers for hyperprolinemia type II.
    Merx J; van Outersterp RE; Engelke UFH; Hendriks V; Wevers RA; Huigen MCDG; Waterval HWAH; Körver-Keularts IMLW; Mecinović J; Rutjes FPJT; Oomens J; Coene KLM; Martens J; Boltje TJ
    Commun Biol; 2022 Sep; 5(1):997. PubMed ID: 36131087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic evidence for a common enzyme catalyzing the second step in the degradation of proline and hydroxyproline.
    Valle D; Goodman SI; Harris SC; Phang JM
    J Clin Invest; 1979 Nov; 64(5):1365-70. PubMed ID: 500817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Respiratory and enzymatic properties of squid heart mitochondria.
    Mommsen TP; Hochachka PW
    Eur J Biochem; 1981 Nov; 120(2):345-50. PubMed ID: 7318831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.