These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7082665)

  • 1. Effect of extracellular Ca2+, K+ and OH- on erythrocyte membrane potential as monitored by the fluorescent probe 3,3'-dipropylthiodicarbocyanine.
    Pape L
    Biochim Biophys Acta; 1982 Apr; 686(2):225-32. PubMed ID: 7082665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of antihistamines and chlorpromazine on the calcium-induced hyperpolarization of the Amphiuma red cell membrane.
    Gárdos G; Lassen UV; Pape L
    Biochim Biophys Acta; 1976 Nov; 448(4):599-606. PubMed ID: 788791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe.
    Hoffman JF; Laris PC
    J Physiol; 1974 Jun; 239(3):519-52. PubMed ID: 4851321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of calcium on the membrane potential of Amphiuma red cells.
    Lassen UV; Pape L; Vestergaard-Bogind B
    J Membr Biol; 1976 Feb; 26(1):51-70. PubMed ID: 3652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-induced oscillations in K+ conductance and membrane potential of human erythrocytes mediated by the ionophore A23187.
    Vestergaard-Bogind B; Bennekou P
    Biochim Biophys Acta; 1982 May; 688(1):37-44. PubMed ID: 6284234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The effects of low temperature and extracellular ions on the membrane potential of newt red cells].
    Kawano K
    Nihon Seirigaku Zasshi; 1983 Apr; 45(4):200-7. PubMed ID: 6887072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Participation of calmodulin in the regulation of plasma membrane electric potential by intracellular calcium].
    Orlov SN; Kravtsov GM
    Biokhimiia; 1983 Sep; 48(9):1447-55. PubMed ID: 6414535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human red blood cell membrane potential and fluidity in glucose solutions.
    Zavodnik IB; Piasecka A; Szosland K; Bryszewska M
    Scand J Clin Lab Invest; 1997 Feb; 57(1):59-63. PubMed ID: 9127458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane potential of primitive red cells from chick embryo is a proton potential.
    Engelke M; Zingel W; Baumann R
    J Cell Physiol; 1988 Apr; 135(1):87-93. PubMed ID: 2835379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of the Ca ionophore A-23187 on the plasmatic and mitochondrial potentials of the brain synaptosomes in rats: fluorescence measurements].
    Tiniakova LR; Antonikov IM; Glebov RN
    Biull Eksp Biol Med; 1989 Jun; 107(6):678-80. PubMed ID: 2551414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential difference and the distribution of ions across the human red blood cell membrane; a study of the mechanism by which the fluorescent cation, diS-C3-(5) reports membrane potential.
    Hladky SB; Rink TJ
    J Physiol; 1976 Dec; 263(2):287-319. PubMed ID: 14255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.
    Dyrda A; Cytlak U; Ciuraszkiewicz A; Lipinska A; Cueff A; Bouyer G; Egée S; Bennekou P; Lew VL; Thomas SL
    PLoS One; 2010 Feb; 5(2):e9447. PubMed ID: 20195477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lymphocyte membrane potential assessed with fluorescent probes.
    Rink TJ; Montecucco C; Hesketh TR; Tsien RY
    Biochim Biophys Acta; 1980; 595(1):15-30. PubMed ID: 6153065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+-activated K+ channels in human red cells. Comparison of single-channel currents with ion fluxes.
    Grygorczyk R; Schwarz W; Passow H
    Biophys J; 1984 Apr; 45(4):693-8. PubMed ID: 6326876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane potentials associated with Ca-induced K conductance in human red blood cells: studies with a fluorescent oxonol dye, WW 781.
    Freedman JC; Novak TS
    J Membr Biol; 1983; 72(1-2):59-74. PubMed ID: 6406671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature sensitivity of the erythrocyte membrane potential as determined by cyanine dye fluorescence.
    Mikkelsen RB; Wallach DF
    Cell Biol Int Rep; 1977 Jan; 1(1):51-5. PubMed ID: 610867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.
    Laris PC; Pershadsingh HA; Johnstone RM
    Biochim Biophys Acta; 1976 Jun; 436(2):475-88. PubMed ID: 1276225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of membrane potential changes using the carbocyanine dye, diS-C3-(5): synchronous excitation spectroscopy studies.
    Plásek J; Hrouda V
    Eur Biophys J; 1991; 19(4):183-8. PubMed ID: 2029874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of (DL)-propranolol and Ca2+ on membrane potential and amino acid transport in Ehrlich ascites tumor cells.
    Pershadsingh HA; Johnstone RM; Laris PC
    Biochim Biophys Acta; 1978 May; 509(2):360-73. PubMed ID: 26402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the transmembrane potential of bacterial cells by voltage-sensitive dyes.
    Suzuki H; Wang ZY; Yamakoshi M; Kobayashi M; Nozawa T
    Anal Sci; 2003 Sep; 19(9):1239-42. PubMed ID: 14516073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.