These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7082743)

  • 1. Stress relaxation and creep behaviour of normal and carbon fibre reinforced acrylic bone cement.
    Pal S; Saha S
    Biomaterials; 1982 Apr; 3(2):93-6. PubMed ID: 7082743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of mechanical properties of acrylic bone cement by fiber reinforcement.
    Saha S; Pal S
    J Biomech; 1984; 17(7):467-78. PubMed ID: 6480622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creep characteristics of hand- and vacuum-mixed acrylic bone cement at elevated stress levels.
    Norman TL; Kish V; Blaha JD; Gruen TA; Hustosky K
    J Biomed Mater Res; 1995 Apr; 29(4):495-501. PubMed ID: 7622534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term compressive creep deformation and damage in acrylic bone cements.
    Chwirut DJ
    J Biomed Mater Res; 1984 Jan; 18(1):25-37. PubMed ID: 6699030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of commercially made carbon-fiber-reinforced polymethylmethacrylate.
    Saha S; Pal S
    J Biomed Mater Res; 1986; 20(6):817-26. PubMed ID: 3722216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-rate dependence of the compressive properties of normal and carbon-fiber-reinforced bone cement.
    Saha S; Pal S
    J Biomed Mater Res; 1983 Nov; 17(6):1041-7. PubMed ID: 6654926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fracture toughness of Kevlar 29/poly(methyl methacrylate) composite materials for surgical implantations.
    Pourdeyhimi B; Robinson HH; Schwartz P; Wagner HD
    Ann Biomed Eng; 1986; 14(3):277-94. PubMed ID: 3767094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of centrifugation and titanium fiber reinforcement on fatigue failure mechanisms in poly(methyl methacrylate) bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1995 Mar; 29(3):299-307. PubMed ID: 7615581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bending properties of wire-reinforced bone cement for applications in spinal fixation.
    Saha S; Kraay MJ
    J Biomed Mater Res; 1979 May; 13(3):443-57. PubMed ID: 438229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic behaviour of acrylic bone cements.
    Yetkinler DN; Litsky AS
    Biomaterials; 1998 Sep; 19(17):1551-9. PubMed ID: 9830980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of poly(methyl methacrylate) bone cements.
    Robinson RP; Wright TM; Burstein AH
    J Biomed Mater Res; 1981 Mar; 15(2):203-8. PubMed ID: 7348714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon fiber-reinforced bone cement in orthopedic surgery.
    Pilliar RM; Blackwell R; Macnab I; Cameron HU
    J Biomed Mater Res; 1976 Nov; 10(6):893-906. PubMed ID: 993226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of temperature and specimen size on the flexural properties of PMMA bone cement.
    Brown SA; Bargar WL
    J Biomed Mater Res; 1984; 18(5):523-36. PubMed ID: 6376514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors influencing the creep behavior of poly(methyl methacrylate) cements.
    Treharne RW; Brown N
    J Biomed Mater Res; 1975 Jul; 9(4):81-88. PubMed ID: 1176512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue properties and stem subsidence in wire coil reinforced PMMA bone cement: a preliminary in vitro study.
    Kim JK; Park JB
    Biomed Mater Eng; 1996; 6(6):453-62. PubMed ID: 9138655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic creep behavior of acrylic bone cement.
    Verdonschot N; Huiskes R
    J Biomed Mater Res; 1995 May; 29(5):575-81. PubMed ID: 7622542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow crack growth in acrylic bone cement.
    Beaumont PW; Young RJ
    J Biomed Mater Res; 1975 Sep; 9(5):423-39. PubMed ID: 1176518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement of bone cement using zirconia fibers with and without acrylic coating.
    Kotha S; Li C; Schmid S; Mason J
    J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved fatigue life of acrylic bone cements reinforced with zirconia fibers.
    Kane RJ; Yue W; Mason JJ; Roeder RK
    J Mech Behav Biomed Mater; 2010 Oct; 3(7):504-11. PubMed ID: 20696415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.