These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 7082784)
1. Flux regulation in glycogen-induced oscillatory glycolysis in cell-free extracts of Saccharomyces carlsbergensis. Jonnalagadda SB; Becker JU; Sel'kov EE; Betz A Biosystems; 1982; 15(1):49-58. PubMed ID: 7082784 [TBL] [Abstract][Full Text] [Related]
2. Regulation of glycogen synthesis and glucose utilization in Escherichia coli during maintenance of the energy charge. Quantitative correlation of changes in the rates of glycogen synthesis and glucose utilization with simultaneous changes in the cellular levels of both glucose 6-phosphate and fructose 1,6-diphosphate. Dietzler DN; Leckie MP; Sternheim WL; Ungar JM; Crimmins DL; Lewis JW J Biol Chem; 1979 Sep; 254(17):8276-87. PubMed ID: 381301 [TBL] [Abstract][Full Text] [Related]
3. Aberrant Intracellular pH Regulation Limiting Glyceraldehyde-3-Phosphate Dehydrogenase Activity in the Glucose-Sensitive Yeast Van Leemputte F; Vanthienen W; Wijnants S; Van Zeebroeck G; Thevelein JM mBio; 2020 Oct; 11(5):. PubMed ID: 33109759 [TBL] [Abstract][Full Text] [Related]
4. Relationship of glycolytic intermediates, glycolytic enzymes, and ammonia to glycogen metabolism during sporulation in the yeast Saccharomyces cerevisiae. Fonzi WA; Shanley M; Opheim DJ J Bacteriol; 1979 Jan; 137(1):285-94. PubMed ID: 368017 [TBL] [Abstract][Full Text] [Related]
5. Anaerobic ATP provision, glycogenolysis and glycolysis in rat slow-twitch muscle during tetanic contractions. Spriet LL Pflugers Arch; 1990 Nov; 417(3):278-84. PubMed ID: 2148818 [TBL] [Abstract][Full Text] [Related]
6. Metabolic regulation during early frog development: glycogenic flux in Xenopus oocytes, eggs, and embryos. Dworkin MB; Dworkin-Rastl E Dev Biol; 1989 Apr; 132(2):512-23. PubMed ID: 2538374 [TBL] [Abstract][Full Text] [Related]
7. Effects of various metabolic conditions and of the trivalent arsenical melarsen oxide on the intracellular levels of fructose 2,6-bisphosphate and of glycolytic intermediates in Trypanosoma brucei. Van Schaftingen E; Opperdoes FR; Hers HG Eur J Biochem; 1987 Aug; 166(3):653-61. PubMed ID: 3038548 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of glucose phosphorylation by fatty acids in the perfused rat heart. Chatham J; Gilbert HF; Radda GK FEBS Lett; 1988 Oct; 238(2):445-9. PubMed ID: 3169268 [TBL] [Abstract][Full Text] [Related]
9. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium. Kitanovic A; Walther T; Loret MO; Holzwarth J; Kitanovic I; Bonowski F; Van Bui N; Francois JM; Wölfl S FEMS Yeast Res; 2009 Jun; 9(4):535-51. PubMed ID: 19341380 [TBL] [Abstract][Full Text] [Related]
10. A new regulatory principle for in vivo biochemistry: pleiotropic low affinity regulation by the adenine nucleotides--illustrated for the glycolytic enzymes of Saccharomyces cerevisiae. Mensonides FI; Bakker BM; Cremazy F; Messiha HL; Mendes P; Boogerd FC; Westerhoff HV FEBS Lett; 2013 Sep; 587(17):2860-7. PubMed ID: 23856461 [TBL] [Abstract][Full Text] [Related]
11. Glycogen synthase in Saccharomyces carlsbergensis cells capable of oscillatory glycolysis. Becker JU Arch Microbiol; 1977 Nov; 115(2):181-4. PubMed ID: 413523 [TBL] [Abstract][Full Text] [Related]
12. Control of glycolytic enzyme binding: effect of changing enzyme substrate concentrations on in vivo enzyme distributions. Brooks SP; Storey KB Mol Cell Biochem; 1993 May; 122(1):1-7. PubMed ID: 8350861 [TBL] [Abstract][Full Text] [Related]
13. Effects of insulin-like growth factor I on the rates of glucose transport and utilization in rat skeletal muscle in vitro. Dimitriadis G; Parry-Billings M; Bevan S; Dunger D; Piva T; Krause U; Wegener G; Newsholme EA Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):269-74. PubMed ID: 1637311 [TBL] [Abstract][Full Text] [Related]
14. Changes in intracellular levels of fructose 2,6-bisphosphate and several glycolytic intermediates in Leishmania major promastigotes as a function of pO2. Keegan FP; Blum JJ Mol Biochem Parasitol; 1991 Aug; 47(2):161-6. PubMed ID: 1944414 [TBL] [Abstract][Full Text] [Related]
15. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. Larsson C; Nilsson A; Blomberg A; Gustafsson L J Bacteriol; 1997 Dec; 179(23):7243-50. PubMed ID: 9393686 [TBL] [Abstract][Full Text] [Related]
16. A hysteretic cycle in glucose 6-phosphate metabolism observed in a cell-free yeast extract. Eschrich K; Schellenberger W; Hofmann E Eur J Biochem; 1990 Mar; 188(3):697-703. PubMed ID: 2158887 [TBL] [Abstract][Full Text] [Related]
17. Role of fructose 2,6-bisphosphate in the control of glycolysis. Stimulation of glycogen synthesis by lactate in the isolated working rat heart. Depré C; Veitch K; Hue L Acta Cardiol; 1993; 48(1):147-64. PubMed ID: 8447185 [TBL] [Abstract][Full Text] [Related]
18. Interaction with cellular ATP generating pathways mediates menadione-induced cytotoxicity in isolated rat hepatocytes. Redegeld FA; Moison RM; Barentsen HM; Koster AS; Noordhoek J Arch Biochem Biophys; 1990 Jul; 280(1):130-6. PubMed ID: 2353814 [TBL] [Abstract][Full Text] [Related]
19. Metabolic regulation of the trehalose content of vegetative yeast. Winkler K; Kienle I; Burgert M; Wagner JC; Holzer H FEBS Lett; 1991 Oct; 291(2):269-72. PubMed ID: 1834481 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of inhibition of glycolysis in Streptococcus mutans NCIB 11723 by chlorhexidine. Iwami Y; Schachtele CF; Yamada T Oral Microbiol Immunol; 1995 Dec; 10(6):360-4. PubMed ID: 8602344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]