These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 7082818)

  • 1. Geometric, osmotic, and membrane mechanical properties of density-separated human red cells.
    Linderkamp O; Meiselman HJ
    Blood; 1982 Jun; 59(6):1121-7. PubMed ID: 7082818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and geometrical properties of density-separated neonatal and adult erythrocytes.
    Linderkamp O; Friederichs E; Meiselman HJ
    Pediatr Res; 1993 Nov; 34(5):688-93. PubMed ID: 8284111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of oxygenated red blood cells in sickle cell (HbSS) disease.
    Nash GB; Johnson CS; Meiselman HJ
    Blood; 1984 Jan; 63(1):73-82. PubMed ID: 6689955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alteration of red cell membrane viscoelasticity by heat treatment: effect on cell deformability and suspension viscosity.
    Nash GB; Meiselman HJ
    Biorheology; 1985; 22(1):73-84. PubMed ID: 3986320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of surface-area-to-volume ratio, internal viscosity and membrane viscoelasticity on red blood cell deformability measured in isotonic condition.
    Renoux C; Faivre M; Bessaa A; Da Costa L; Joly P; Gauthier A; Connes P
    Sci Rep; 2019 May; 9(1):6771. PubMed ID: 31043643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age.
    Waugh RE; Narla M; Jackson CW; Mueller TJ; Suzuki T; Dale GL
    Blood; 1992 Mar; 79(5):1351-8. PubMed ID: 1536958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The single erythrocyte rigidometer (SER) as a reference for RBC deformability.
    Kiesewetter H; Dauer U; Teitel P; Schmid-Schönbein H; Trapp R
    Biorheology; 1982; 19(6):737-53. PubMed ID: 7184522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red blood cell deformation in shear flow. Effects of internal and external phase viscosity and of in vivo aging.
    Pfafferott C; Nash GB; Meiselman HJ
    Biophys J; 1985 May; 47(5):695-704. PubMed ID: 4016189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical and mathematical corrections of micropipette measurements of red blood cell geometry during anisotonic perifusion.
    Engström KG; Meiselman HJ
    Cytometry; 1994 Dec; 17(4):279-86. PubMed ID: 7875034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of osmolality on erythrocyte rheology and perfusion of an artificial microvascular network.
    Reinhart WH; Piety NZ; Goede JS; Shevkoplyas SS
    Microvasc Res; 2015 Mar; 98():102-7. PubMed ID: 25660474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red cell and ghost viscoelasticity. Effects of hemoglobin concentration and in vivo aging.
    Nash GB; Meiselman HJ
    Biophys J; 1983 Jul; 43(1):63-73. PubMed ID: 6882863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical fragility of erythrocyte membrane in neonates and adults.
    Böhler T; Leo A; Stadler A; Linderkamp O
    Pediatr Res; 1992 Jul; 32(1):92-6. PubMed ID: 1635851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and deformation properties of red blood cells: concepts and quantitative methods.
    Evans EA
    Methods Enzymol; 1989; 173():3-35. PubMed ID: 2674613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry of neonatal and adult red blood cells.
    Linderkamp O; Wu PY; Meiselman HJ
    Pediatr Res; 1983 Apr; 17(4):250-3. PubMed ID: 6856385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions.
    McKay CB; Meiselman HJ
    Am J Physiol; 1988 Feb; 254(2 Pt 2):H238-49. PubMed ID: 3344815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformability and intrinsic material properties of neonatal red blood cells.
    Linderkamp O; Nash GB; Wu PY; Meiselman HJ
    Blood; 1986 May; 67(5):1244-50. PubMed ID: 3697506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in deformability of human erythrocytes.
    Sutera SP; Gardner RA; Boylan CW; Carroll GL; Chang KC; Marvel JS; Kilo C; Gonen B; Williamson JR
    Blood; 1985 Feb; 65(2):275-82. PubMed ID: 3967082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red cell membrane stiffness in iron deficiency.
    Yip R; Mohandas N; Clark MR; Jain S; Shohet SB; Dallman PR
    Blood; 1983 Jul; 62(1):99-106. PubMed ID: 6860798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of the viscoelastic recovery of red cell membrane.
    Hochmuth RM; Buxbaum KL; Evans EA
    Biophys J; 1980 Jan; 29(1):177-82. PubMed ID: 7260246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields.
    Engelhardt H; Sackmann E
    Biophys J; 1988 Sep; 54(3):495-508. PubMed ID: 3207837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.