These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 7082990)

  • 61. Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase.
    Langer T; Fuchs AF; Scudder CA; Chubb MC
    J Comp Neurol; 1985 May; 235(1):1-25. PubMed ID: 3989000
    [TBL] [Abstract][Full Text] [Related]  

  • 62. In vitro radioautographic study of the monoaminergic innervation of cat red nucleus. Identification of serotoninergic terminals.
    Bosler O; Nieoullon A; Onteniente B; Dusticier N
    Brain Res; 1983 Jan; 259(2):288-92. PubMed ID: 6824939
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An autoradiographic study of midbrain-diencephalic projections to the inferior olivary nucleus in the opossum (Didelphis virginiana).
    Linauts M; Martin GF
    J Comp Neurol; 1978 May; 179(2):325-53. PubMed ID: 641221
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hypertrophic olivary degeneration and Purkinje cell degeneration in a case of long-standing head injury.
    Anderson JR; Treip CS
    J Neurol Neurosurg Psychiatry; 1973 Oct; 36(5):826-32. PubMed ID: 4753879
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Autoradiographic study of descending pathways from the pontine reticular formation and the mesencephalic trigeminal nucleus in the rat.
    Sirkin DW; Feng AS
    J Comp Neurol; 1987 Feb; 256(4):483-93. PubMed ID: 3558885
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Somatotopical organization of the projection from the nucleus interpositus anterior of the cerebellum to the red nucleus. An experimental study in the cat with silver impregnation methods.
    Courville J
    Exp Brain Res; 1966; 2(3):191-215. PubMed ID: 4163693
    [No Abstract]   [Full Text] [Related]  

  • 67. The role of some brain structures in the switching of the descending influences in operantly conditioned rats.
    Fanardjian VV; Papoyan EV; Hovhannisyan EA; Melik-Moussian AB; Gevorkyan OV; Pogossian VI
    Neuroscience; 2000; 98(2):385-95. PubMed ID: 10854772
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pontine and medullary projections to the nucleus retroambiguus: a wheat germ agglutinin-horseradish peroxidase and autoradiographic tracing study in the cat.
    Gerrits PO; Holstege G
    J Comp Neurol; 1996 Sep; 373(2):173-85. PubMed ID: 8889920
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The dentato-olivary pathway. Somatotopic relationship between the dentate nucleus and the contralateral inferior olive.
    Lapresle J; Hamida MB
    Arch Neurol; 1970 Feb; 22(2):135-43. PubMed ID: 4188259
    [No Abstract]   [Full Text] [Related]  

  • 70. Decussations of the descending paraventricular pathways to the brainstem and spinal cord autonomic centers.
    Tóth ZE; Gallatz K; Fodor M; Palkovits M
    J Comp Neurol; 1999 Nov; 414(2):255-66. PubMed ID: 10516595
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Incidence of degenerate fibres in the dorsal column nuclei after ligation of the abdominal aorta.
    Marossy A; Mitro A; Marsala J
    J Hirnforsch; 1983; 24(5):569-74. PubMed ID: 6663056
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Separate non-cholinergic descending projections and cholinergic ascending projections from the nucleus tegmenti pedunculopontinus.
    Goldsmith M; van der Kooy D
    Brain Res; 1988 Apr; 445(2):386-91. PubMed ID: 2453253
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The rubrospinal tract in a diprotodont marsupial (Trichosurus vulpecula).
    Warner G; Watson CR
    Brain Res; 1972 Jun; 41(1):180-3. PubMed ID: 5036035
    [No Abstract]   [Full Text] [Related]  

  • 74. Target cells of rubrospinal tract fibres within the lumbar spinal cord.
    Jankowska E
    Behav Brain Res; 1988; 28(1-2):91-6. PubMed ID: 3289563
    [TBL] [Abstract][Full Text] [Related]  

  • 75. On the presence of nucleus ruber in the urodele Salamandra salamandra and the caecilian Ichthyophis kohtaoensis.
    Naujoks-Manteuffel C; Manteuffel G; Himstedt W
    Behav Brain Res; 1988; 28(1-2):29-32. PubMed ID: 3382518
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nucleus interpositus projection to spinal interneurons in monkeys.
    Asanuma C; Thach WT; Jones EG
    Brain Res; 1980 Jun; 191(1):245-8. PubMed ID: 6769539
    [No Abstract]   [Full Text] [Related]  

  • 77. The adult organization and development of the rubrospinal tract. An experimental study using the orthograde transport of WGA-HRP in the North-American opossum.
    Cabana T; Martin GF
    Brain Res; 1986 Nov; 395(1):1-11. PubMed ID: 3779426
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hearing, II: the retrocochlear auditory pathway.
    Swartz JD; Daniels DL; Harnsberger HR; Ulmer JL; Shaffer KA; Mark LP
    AJNR Am J Neuroradiol; 1996 Sep; 17(8):1479-81. PubMed ID: 8883643
    [No Abstract]   [Full Text] [Related]  

  • 79. In vivo structural and functional imaging of the human rubral and inferior olivary nuclei: A mini-review.
    Habas C; Guillevin R; Abanou A
    Cerebellum; 2010 Jun; 9(2):167-73. PubMed ID: 19898914
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Histological findings after hemicerebellectomy in man: anterograde, retrograde and transneuronal degeneration.
    Smith MC
    Brain Res; 1975 Sep; 95(2-3):423-42. PubMed ID: 1156883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.