These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 7084381)

  • 1. Absence of functional recovery after spinal hemisections in mice genetically deficient in hemolytic complement.
    Gilad GM; Kupmar V
    Exp Neurol; 1982 Jun; 76(3):666-9. PubMed ID: 7084381
    [No Abstract]   [Full Text] [Related]  

  • 2. DISTRIBUTION, INHERITANCE, AND PROPERTIES OF AN ANTIGEN, MUB1, AND ITS RELATION TO HEMOLYTIC COMPLEMENT.
    CINADER B; DUBISKI S; WARDLAW AC
    J Exp Med; 1964 Nov; 120(5):897-924. PubMed ID: 14247728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Long term recovery of motor excitability in the chronic spinal eel].
    Blancheteau M
    J Physiol (Paris); 1969; 61(3):257-63. PubMed ID: 5403628
    [No Abstract]   [Full Text] [Related]  

  • 4. Histological changes after transection of the spinal cord of fetal and neonatal mice.
    Gearhart J; Oster-Granite ML; Guth L
    Exp Neurol; 1979 Oct; 66(1):1-15. PubMed ID: 477801
    [No Abstract]   [Full Text] [Related]  

  • 5. [Regeneration of mammalian central nervous pathways].
    Kawaguchi S
    Tanpakushitsu Kakusan Koso; 1990 Mar; 35(4 Suppl):399-408. PubMed ID: 2333370
    [No Abstract]   [Full Text] [Related]  

  • 6. Prevention of graft-versus-host disease using antibody to Thy 1. A role for complement in vivo.
    Hamilton BL; Harris D
    Transplantation; 1985 Jul; 40(1):90-6. PubMed ID: 2861676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased receptive field size of dorsal horn neurons following chronic spinal cord hemisections in cats.
    Brenowitz GL; Pubols LM
    Brain Res; 1981 Jul; 216(1):45-59. PubMed ID: 7260608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do propriospinal projections contribute to hindlimb recovery when all long tracts are cut in neonatal or weanling rats?
    Stelzner DJ; Cullen JM
    Exp Neurol; 1991 Nov; 114(2):193-205. PubMed ID: 1748194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Schwann cell p75NTR prevents spontaneous sensory reinnervation of the adult spinal cord.
    Scott AL; Ramer MS
    Brain; 2010 Feb; 133(Pt 2):421-32. PubMed ID: 20047901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of C3 deficiency on inflammation and regeneration following spinal cord injury in mice.
    Guo Q; Li S; Liang Y; Zhang Y; Zhang J; Wen C; Lin S; Wang H; Su B
    Neurosci Lett; 2010 Nov; 485(1):32-6. PubMed ID: 20800648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration of corticospinal axons in the rat.
    Feringa ER; Shuer LM; Vahlsing HL; Davis SW
    Ann Neurol; 1977 Oct; 2(4):315-21. PubMed ID: 281190
    [No Abstract]   [Full Text] [Related]  

  • 12. Sprouting by tracts descending from the midbrain to the spinal cord: the result of thoracic funiculotomy in the newborn, 21-day-old, and adult rat.
    Prendergast J; Misantone LJ
    Exp Neurol; 1980 Sep; 69(3):458-80. PubMed ID: 7409059
    [No Abstract]   [Full Text] [Related]  

  • 13. Functional regeneration of intraspinal connections in a new in vitro model.
    Heidemann M; Streit J; Tscherter A
    Neuroscience; 2014 Mar; 262():40-52. PubMed ID: 24394955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monoclonal anti-erythrocyte autoantibodies derived from NZB mice cause autoimmune hemolytic anemia by two distinct pathogenic mechanisms.
    Shibata T; Berney T; Reininger L; Chicheportiche Y; Ozaki S; Shirai T; Izui S
    Int Immunol; 1990; 2(12):1133-41. PubMed ID: 2090198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased response to sural nerve input in the dorsal horn following chronic spinal cord hemisection.
    Brenowitz GL; Pubols LM
    Brain Res; 1981 Mar; 208(2):421-5. PubMed ID: 7214153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vaccination with dendritic cells pulsed with homogenate protein of spinal cord promotes functional recovery from spinal cord injury in mice.
    Liu M; Zhao J; Liang H; Bian X
    Spinal Cord; 2009 May; 47(5):360-6. PubMed ID: 18825159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of locomotor command systems in the sea lamprey.
    Currie SN; Ayers J
    Brain Res; 1983 Nov; 279(1-2):238-40. PubMed ID: 6640343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is the recovery of stepping following spinal cord injury mediated by modifying existing neural pathways or by generating new pathways? A perspective.
    de Leon RD; Roy RR; Edgerton VR
    Phys Ther; 2001 Dec; 81(12):1904-11. PubMed ID: 11736625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifiability of spinal synapses.
    Mendell LM
    Physiol Rev; 1984 Jan; 64(1):260-324. PubMed ID: 6320234
    [No Abstract]   [Full Text] [Related]  

  • 20. Spontaneous development of plaque-forming cells against sheep erythrocytes by mouse peritoneal cells in culture.
    Gisler RH; Pagès JM; Bussard AE
    Ann Immunol (Paris); 1975; 126(2):231-8. PubMed ID: 1103720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.