BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7084560)

  • 1. The intranuclear distribution of rat uterine estrogen receptors determined after nuclease treatment and chromatin fractionation.
    Pavlik EJ; Katzenellenbogen BS
    Mol Cell Endocrinol; 1982 Apr; 26(1-2):201-16. PubMed ID: 7084560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of nuclear estradiol receptors released by micrococcal nuclease and deoxyribonuclease I.
    Thomas T; Leung BS
    J Steroid Biochem; 1984 Jul; 21(1):35-42. PubMed ID: 6748654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear association states of rat uterine oestrogen receptors as probed by nuclease digestion.
    Schoenberg DR; Clark JH
    Biochem J; 1981 May; 196(2):423-32. PubMed ID: 6274314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and susceptibility to nucleases of transcriptionally active and inactive chromatin fractions from Physarum polycephalum.
    Czupryn M; Toczko K
    Acta Biochim Pol; 1980; 27(2):143-51. PubMed ID: 7435080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intranuclear distribution of rat liver glucocorticoid receptors by nuclease digestion in a cell-free system.
    Sato N; Kyakumoto S; Sawano K; Ota M
    Endocr Res; 1988-1989; 14(4):243-62. PubMed ID: 3250866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bovine estrogen receptor binds chromatin at pre-existing nuclease hypersensitive sites.
    Pratt K; Wierowski JV; Hilf R; Bambara RA
    Mol Cell Endocrinol; 1984 May; 35(2-3):205-14. PubMed ID: 6329851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Aggregation of fragmented chromatin associated with the synthesis of products of its treatment with nuclease].
    Lobanenkov VV; Mironov NM; Kuprianova EI; Shapot VS
    Biokhimiia; 1985 Jul; 50(7):1132-40. PubMed ID: 4041493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subnuclear fractionation by mild micrococcal-nuclease treatment of nuclei of different transcriptional activities causes a partition of expressed and non-expressed genes.
    Dimitriadis GJ; Tata JR
    Biochem J; 1980 May; 187(2):467-77. PubMed ID: 6156673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enrichment of ubiquitinated histone H2A in a low salt extract of micrococcal nuclease-digested myotube nuclei.
    Parlow MH; Haas AL; Lough J
    J Biol Chem; 1990 May; 265(13):7507-12. PubMed ID: 2159002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of an endogenous nucleolytic reaction and of the action micrococcal nuclease and DNAase I on a salt-soluble, compact form of chromatin.
    Krueger RC
    Biochim Biophys Acta; 1978 Sep; 520(2):358-67. PubMed ID: 708740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cations and the accessibility of chromatin to nucleases.
    Billett MA; Hall TJ
    Nucleic Acids Res; 1979 Jun; 6(8):2929-45. PubMed ID: 461208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of eukaryotic chromatin. Evaluation of periodicity using endogenous and exogenous nucleases.
    Keichline LD; Villee CA; Wassarman PM
    Biochim Biophys Acta; 1976 Feb; 425(1):84-94. PubMed ID: 1247619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial purification of nuclear androgen receptor by micrococcal nuclease digestion of chromatin and hydrophobic interaction chromatography.
    Bruchovsky N; Rennie PS; Comeau T
    Eur J Biochem; 1981 Nov; 120(2):399-405. PubMed ID: 7318834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the nuclear estrogen receptor from MCF-7 cells by limited proteolysis.
    Geier A; Beery R; Haimsohn M; Lunenfeld B
    J Steroid Biochem; 1987 Jan; 26(1):35-40. PubMed ID: 3821106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractionation of chromatin, released by nuclease digestion, on ECTHAM-cellulose. Separation of active and inactive chromatin.
    Smith AJ; Billett MA
    Biochim Biophys Acta; 1982 May; 697(2):134-47. PubMed ID: 7104353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of transcriptionally-active chromatin subunits.
    Gottesfeld JM; Butler PJ
    Nucleic Acids Res; 1977 Sep; 4(9):3155-73. PubMed ID: 909802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antagonism to estradiol in the mouse: reduced entry of receptors complexed with 4-hydroxytamoxifen into a Mg2+-soluble chromatin fraction.
    Pavlik EJ; van Nagell JR; Nelson K; Gallion H; Donaldson ES; Kenady DE; Baranowska-Kortylewicz J
    Endocrinology; 1986 May; 118(5):1924-34. PubMed ID: 2422013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo binding of N-2-acetylaminofluorene and its N-hydroxy derivative to the DNA of fractionated rat liver chromatin.
    Walker MS; Becker FF; Rodriguez LV
    Chem Biol Interact; 1979 Oct; 27(2-3):177-90. PubMed ID: 498353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isopycnic banding in metrizamide of the uterine cytosol and nuclear estradiol receptor.
    Baskevitch PP; Rochefort H
    Mol Cell Endocrinol; 1981 May; 22(2):195-210. PubMed ID: 7239002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of acceptor sites for androgen-receptor complexes between transcriptionally active and inactive fractions of rat ventral prostate chromatin.
    Davies P; Thomas P; Borthwick NM; Giles MG
    J Endocrinol; 1980 Nov; 87(2):225-40. PubMed ID: 7430921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.