These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7084571)

  • 41. Positioning of gene products during Caulobacter cell differentiation.
    Shapiro L; Gober JW
    J Cell Sci Suppl; 1989; 11():85-97. PubMed ID: 2693463
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Caulobacter gene involved in polar morphogenesis.
    Driks A; Schoenlein PV; DeRosier DJ; Shapiro L; Ely B
    J Bacteriol; 1990 Apr; 172(4):2113-23. PubMed ID: 2318810
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pseudoreversion analysis indicates a direct role of cell division genes in polar morphogenesis and differentiation in Caulobacter crescentus.
    Sommer JM; Newton A
    Genetics; 1991 Nov; 129(3):623-30. PubMed ID: 1752411
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of nonmotile mutants of the dimorphic bacterium Caulobacter crescentus.
    Johnson RC; Ely B
    J Bacteriol; 1979 Jan; 137(1):627-34. PubMed ID: 762024
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacteria-on-a-bead: probing the hydrodynamic interplay of dynamic cell appendages during cell separation.
    Sauter N; Sangermani M; Hug I; Jenal U; Pfohl T
    Commun Biol; 2022 Oct; 5(1):1093. PubMed ID: 36241769
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Turing-pattern model of scaffolding proteins that establish spatial asymmetry during the cell cycle of
    Xu C; Tyson JJ; Cao Y
    iScience; 2023 Apr; 26(4):106513. PubMed ID: 37128549
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The HfaB and HfaD adhesion proteins of Caulobacter crescentus are localized in the stalk.
    Cole JL; Hardy GG; Bodenmiller D; Toh E; Hinz A; Brun YV
    Mol Microbiol; 2003 Sep; 49(6):1671-83. PubMed ID: 12950929
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A sigma 54 transcriptional activator also functions as a pole-specific repressor in Caulobacter.
    Wingrove JA; Gober JW
    Genes Dev; 1994 Aug; 8(15):1839-52. PubMed ID: 7958861
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Caulobacter crescentus flaFG region regulates synthesis and assembly of flagellin proteins encoded by two genetically unlinked gene clusters.
    Schoenlein PV; Lui J; Gallman L; Ely B
    J Bacteriol; 1992 Oct; 174(19):6046-53. PubMed ID: 1400155
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A mutation that uncouples flagellum assembly from transcription alters the temporal pattern of flagellar gene expression in Caulobacter crescentus.
    Mangan EK; Bartamian M; Gober JW
    J Bacteriol; 1995 Jun; 177(11):3176-84. PubMed ID: 7768816
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.
    Entcheva-Dimitrov P; Spormann AM
    J Bacteriol; 2004 Dec; 186(24):8254-66. PubMed ID: 15576774
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The control of temporal and spatial organization during the Caulobacter cell cycle.
    Domian IJ; Quon KC; Shapiro L
    Curr Opin Genet Dev; 1996 Oct; 6(5):538-44. PubMed ID: 8939718
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cell cycle progression in Caulobacter requires a nucleoid-associated protein with high AT sequence recognition.
    Ricci DP; Melfi MD; Lasker K; Dill DL; McAdams HH; Shapiro L
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):E5952-E5961. PubMed ID: 27647925
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatial and temporal phosphorylation of a transcriptional activator regulates pole-specific gene expression in Caulobacter.
    Wingrove JA; Mangan EK; Gober JW
    Genes Dev; 1993 Oct; 7(10):1979-92. PubMed ID: 8406002
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of cell cycle events in asymmetrically dividing cells: functions required for DNA initiation and chain elongation in Caulobacter crescentus.
    Osley MA; Newton A
    J Bacteriol; 1978 Jul; 135(1):10-7. PubMed ID: 670147
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cell cycle regulation in Caulobacter: location, location, location.
    Goley ED; Iniesta AA; Shapiro L
    J Cell Sci; 2007 Oct; 120(Pt 20):3501-7. PubMed ID: 17928306
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation.
    Jensen RB; Shapiro L
    Proc Natl Acad Sci U S A; 1999 Sep; 96(19):10661-6. PubMed ID: 10485882
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Temporal and spatial regulation of fliP, an early flagellar gene of Caulobacter crescentus that is required for motility and normal cell division.
    Gober JW; Boyd CH; Jarvis M; Mangan EK; Rizzo MF; Wingrove JA
    J Bacteriol; 1995 Jul; 177(13):3656-67. PubMed ID: 7601828
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Positional information during Caulobacter cell differentiation.
    Gober JW; Alley MR; Shapiro L
    Curr Opin Genet Dev; 1991 Oct; 1(3):324-9. PubMed ID: 1840888
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cell-cycle control of a cloned chromosomal origin of replication from Caulobacter crescentus.
    Marczynski GT; Shapiro L
    J Mol Biol; 1992 Aug; 226(4):959-77. PubMed ID: 1518064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.