These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7084571)

  • 61. Effect of macromolecular synthesis on the coordinate morphogenesis of polar surface structures in Caulobacter crescentus.
    Fukuda A; Okada Y
    J Bacteriol; 1977 Jun; 130(3):1199-205. PubMed ID: 405372
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Physiological consequences of blocked Caulobacter crescentus dnaA expression, an essential DNA replication gene.
    Gorbatyuk B; Marczynski GT
    Mol Microbiol; 2001 Apr; 40(2):485-97. PubMed ID: 11309130
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Generating and exploiting polarity in bacteria.
    Shapiro L; McAdams HH; Losick R
    Science; 2002 Dec; 298(5600):1942-6. PubMed ID: 12471245
    [TBL] [Abstract][Full Text] [Related]  

  • 64. PflI, a protein involved in flagellar positioning in Caulobacter crescentus.
    Obuchowski PL; Jacobs-Wagner C
    J Bacteriol; 2008 Mar; 190(5):1718-29. PubMed ID: 18165296
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Differential membrane phospholipid synthesis during the cell cycle of Caulobacter crescentus.
    Mansour JD; Henry S; Shapiro L
    J Bacteriol; 1980 Jan; 141(1):262-9. PubMed ID: 7353999
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Differential localization of membrane receptor chemotaxis proteins in the Caulobacter predivisional cell.
    Nathan P; Gomes SL; Hahnenberger K; Newton A; Shapiro L
    J Mol Biol; 1986 Oct; 191(3):433-40. PubMed ID: 3820292
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Modeling Asymmetric Cell Division in Caulobacter crescentus Using a Boolean Logic Approach.
    Sánchez-Osorio I; Hernández-Martínez CA; Martínez-Antonio A
    Results Probl Cell Differ; 2017; 61():1-21. PubMed ID: 28409298
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Differential localization of two histidine kinases controlling bacterial cell differentiation.
    Wheeler RT; Shapiro L
    Mol Cell; 1999 Nov; 4(5):683-94. PubMed ID: 10619016
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Differential expression and positioning of chemotaxis methylation proteins in Caulobacter.
    Gomes SL; Shapiro L
    J Mol Biol; 1984 Sep; 178(3):551-68. PubMed ID: 6492158
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identification and cell cycle control of a novel pilus system in Caulobacter crescentus.
    Skerker JM; Shapiro L
    EMBO J; 2000 Jul; 19(13):3223-34. PubMed ID: 10880436
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A pleiotropic mutation affecting expression of polar development events in Caulobacter crescentus.
    Kurn N; Ammer S; Shapiro L
    Proc Natl Acad Sci U S A; 1974 Aug; 71(8):3157-61. PubMed ID: 4212892
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development.
    Levi A; Jenal U
    J Bacteriol; 2006 Jul; 188(14):5315-8. PubMed ID: 16816207
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mutations in FlbD that relieve the dependency on flagellum assembly alter the temporal and spatial pattern of developmental transcription in Caulobacter crescentus.
    Muir RE; Gober JW
    Mol Microbiol; 2002 Feb; 43(3):597-615. PubMed ID: 11929518
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Role of core promoter sequences in the mechanism of swarmer cell-specific silencing of gyrB transcription in Caulobacter crescentus.
    England JC; Gober JW
    BMC Microbiol; 2005 May; 5():25. PubMed ID: 15904494
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake.
    Ireland MM; Karty JA; Quardokus EM; Reilly JP; Brun YV
    Mol Microbiol; 2002 Aug; 45(4):1029-41. PubMed ID: 12180922
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Absence of the Polar Organizing Protein PopZ Results in Reduced and Asymmetric Cell Division in Agrobacterium tumefaciens.
    Howell M; Aliashkevich A; Salisbury AK; Cava F; Bowman GR; Brown PJB
    J Bacteriol; 2017 Sep; 199(17):. PubMed ID: 28630123
    [No Abstract]   [Full Text] [Related]  

  • 77. Synchronous cell differentiation in Caulobacter crescentus.
    Iba H; Fukuda A; Okada Y
    Jpn J Microbiol; 1975 Dec; 19(6):441-6. PubMed ID: 1230510
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Regulation of polar surface structures in Caulobacter crescentus: pleiotropic mutations affect the coordinate morphogenesis of flagella, pili and phage receptors.
    Fukuda A; Miyakawa K; Iida H; Okada Y
    Mol Gen Genet; 1976 Dec; 149(2):167-73. PubMed ID: 1012268
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Loss of PodJ in Agrobacterium tumefaciens Leads to Ectopic Polar Growth, Branching, and Reduced Cell Division.
    Anderson-Furgeson JC; Zupan JR; Grangeon R; Zambryski PC
    J Bacteriol; 2016 Jul; 198(13):1883-1891. PubMed ID: 27137498
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Phase separation modulates the assembly and dynamics of a polarity-related scaffold-signaling hub.
    Tan W; Cheng S; Li Y; Li XY; Lu N; Sun J; Tang G; Yang Y; Cai K; Li X; Ou X; Gao X; Zhao GP; Childers WS; Zhao W
    Nat Commun; 2022 Nov; 13(1):7181. PubMed ID: 36418326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.