These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 7085072)

  • 21. Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in Streptococcus mutans NCTC 10449.
    Slee AM; Tanzer JM
    Infect Immun; 1979 Jun; 24(3):821-8. PubMed ID: 468377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and properties of distinct sucrose and glucose phosphotransferase enzyme II activities in Streptococcus mutans 6715g.
    Jacobson GR; Mimura CS; Scott PJ; Thompson PW
    Infect Immun; 1984 Dec; 46(3):854-6. PubMed ID: 6500714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of sugar transport via the multiple sugar metabolism operon of Streptococcus mutans by the phosphoenolpyruvate phosphotransferase system.
    Cvitkovitch DG; Boyd DA; Hamilton IR
    J Bacteriol; 1995 Oct; 177(19):5704-6. PubMed ID: 7559362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repeated DNA sequence involved in mutations affecting transport of sucrose into Streptococcus mutans V403 via the phosphoenolpyruvate phosphotransferase system.
    Macrina FL; Jones KR; Alpert CA; Chassy BM; Michalek SM
    Infect Immun; 1991 Apr; 59(4):1535-43. PubMed ID: 2004831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition by the antimicrobial agent chlorhexidine of acid production and sugar transport in oral streptococcal bacteria.
    Marsh PD; Keevil CW; McDermid AS; Williamson MI; Ellwood DC
    Arch Oral Biol; 1983; 28(3):233-40. PubMed ID: 6574734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vesicles prepared from Streptococcus mutans demonstrate the presence of a second glucose transport system.
    Buckley ND; Hamilton IR
    Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2639-48. PubMed ID: 8000534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The repressible metabolism of sorbitol (D-glucitol) by intact cells of the oral plaque-forming bacterium Streptococcus mutans.
    Slee AM; Tanzer JM
    Arch Oral Biol; 1983; 28(9):839-45. PubMed ID: 6579915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emergence of multiple xylitol-resistant (fructose PTS-) mutants from human isolates of mutans streptococci during growth on dietary sugars in the presence of xylitol.
    Trahan L; Bourgeau G; Breton R
    J Dent Res; 1996 Nov; 75(11):1892-900. PubMed ID: 9003237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for presence of a xylitol phosphotransferase system in Streptococcus mutans OMZ 176.
    Assev S; Rölla G
    Acta Pathol Microbiol Immunol Scand B; 1984 Apr; 92(2):89-92. PubMed ID: 6730972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of N-acetylglucosamine on carbohydrate fermentation by Streptococcus mutans NCTC 10449 and Streptococcus sobrinus SL-1.
    Homer KA; Patel R; Beighton D
    Infect Immun; 1993 Jan; 61(1):295-302. PubMed ID: 8418050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sucrose transport by Streptococcus mutans. Evidence for multiple transport systems.
    Slee AM; Tanzer JM
    Biochim Biophys Acta; 1982 Nov; 692(3):415-24. PubMed ID: 7171603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sorbitol transport and metabolism by oral streptococci.
    Svensäter G
    Swed Dent J Suppl; 1991; 79():1-103. PubMed ID: 1896926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maintenance of proton motive force by Streptococcus mutans and Streptococcus sobrinus during growth in continuous culture.
    Hamilton IR
    Oral Microbiol Immunol; 1990 Oct; 5(5):280-7. PubMed ID: 2098703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coordinated Regulation of the EII
    Zeng L; Chakraborty B; Farivar T; Burne RA
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28821551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uptake and metabolism of sucrose by Streptococcus lactis.
    Thompson J; Chassy BM
    J Bacteriol; 1981 Aug; 147(2):543-51. PubMed ID: 6267012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport and phosphorylation of xylitol by a fructose phosphotransferase system in Streptococcus mutans.
    Trahan L; Bareil M; Gauthier L; Vadeboncoeur C
    Caries Res; 1985; 19(1):53-63. PubMed ID: 3856485
    [No Abstract]   [Full Text] [Related]  

  • 38. Construction of scrA::lacZ gene fusions to investigate regulation of the sucrose PTS of Streptococcus mutans.
    Sato Y; Yamamoto Y; Suzuki R; Kizaki H; Kuramitsu HK
    FEMS Microbiol Lett; 1991 Apr; 63(2-3):339-45. PubMed ID: 1905660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of carbohydrate source and growth conditions on the production of lipoteichoic acid by Streptococcus mutans Ingbritt.
    Jacques NA; Hardy L; Campbell LK; Knox KW; Evans JD; Wicken AJ
    Infect Immun; 1979 Dec; 26(3):1079-87. PubMed ID: 43288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In-vitro acid production by the oral bacterium Streptococcus mutans 10449 in various concentrations of glucose, fructose and sucrose.
    Duguid R
    Arch Oral Biol; 1985; 30(4):319-24. PubMed ID: 3857902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.