These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 7085558)

  • 61. In vitro activation of inactive nitrogenase component I with molybdate.
    Pienkos PT; Klevickis S; Brill WJ
    J Bacteriol; 1981 Jan; 145(1):248-56. PubMed ID: 6936396
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management.
    Cornish AS; Page WJ
    Microbiology (Reading); 1998 Jul; 144(7):1747-1754. PubMed ID: 33757230
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nitrogenase. I. Repression and derepression of the iron-molybdenum and iron proteins of nitrogenase in Azotobacter vinelandii.
    Shah VK; Davis LC; Brill WJ
    Biochim Biophys Acta; 1972 Feb; 256(2):498-511. PubMed ID: 5016550
    [No Abstract]   [Full Text] [Related]  

  • 64. Molybdenum independence of nitrogenase component synthesis in the non-heterocystous cyanobacterium Plectonema.
    Nagatani HH; Haselkorn R
    J Bacteriol; 1978 May; 134(2):597-605. PubMed ID: 96092
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The molecular weight of, and evidence for two types of subunits in, the molybdenum-iron protein of Azotobacter vinelandii nitrogenase.
    Swisher RH; Landt ML; Reithel FJ
    Biochem J; 1977 Jun; 163(3):427-32. PubMed ID: 880213
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Activation of vanadium nitrogenase expression in Azotobacter vinelandii DJ54 revertant in the presence of molybdenum.
    Lei S; Pulakat L; Gavini N
    FEBS Lett; 2000 Sep; 482(1-2):149-53. PubMed ID: 11018539
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ferric reductase activity in Azotobacter vinelandii and its inhibition by Zn2+.
    Huyer M; Page WJ
    J Bacteriol; 1989 Jul; 171(7):4031-7. PubMed ID: 2525550
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Identification of an iron-regulated 37,000-dalton protein in the cell envelope of Neisseria gonorrhoeae.
    Mietzner TA; Luginbuhl GH; Sandstrom E; Morse SA
    Infect Immun; 1984 Aug; 45(2):410-6. PubMed ID: 6430806
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Iron-Dependent Production of Hydroxamate by Sodium-Dependent Azotobacter chroococcum.
    Page WJ
    Appl Environ Microbiol; 1987 Jul; 53(7):1418-24. PubMed ID: 16347372
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Physiological factors affecting transformation of Azotobacter vinelandii.
    Page WJ; Sadoff HL
    J Bacteriol; 1976 Mar; 125(3):1080-7. PubMed ID: 3492
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Investigating the effects of metals on phenol oxidase-producing nitrogen-fixing Azotobacter chroococcum.
    Herter S; Schmidt M; Thompson ML; Mikolasch A; Schauer F
    J Basic Microbiol; 2013 Jun; 53(6):509-17. PubMed ID: 22961388
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Iron-regulated phenylalanyl-tRNA synthetase activity in Azotobacter vinelandii.
    Page WJ; Mehrotra M; Vande Woestyne M; Tindale AE; Kujat Choy SL; Macyk AS; Leskiw BK
    FEMS Microbiol Lett; 2003 Jan; 218(1):15-21. PubMed ID: 12583892
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Purification of a NifEN protein complex that contains bound molybdenum and a FeMo-Co precursor from an Azotobacter vinelandii DeltanifHDK strain.
    Soboh B; Igarashi RY; Hernandez JA; Rubio LM
    J Biol Chem; 2006 Dec; 281(48):36701-9. PubMed ID: 17012743
    [TBL] [Abstract][Full Text] [Related]  

  • 74. nifV-dependent, low-molecular-weight factor required for in vitro synthesis of iron-molybdenum cofactor of nitrogenase.
    Hoover TR; Shah VK; Roberts GP; Ludden PW
    J Bacteriol; 1986 Sep; 167(3):999-1003. PubMed ID: 3017921
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum.
    Schlessman JL; Woo D; Joshua-Tor L; Howard JB; Rees DC
    J Mol Biol; 1998 Jul; 280(4):669-85. PubMed ID: 9677296
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Molybdenum and iron mutually impact their homeostasis in cucumber (Cucumis sativus) plants.
    Vigani G; Di Silvestre D; Agresta AM; Donnini S; Mauri P; Gehl C; Bittner F; Murgia I
    New Phytol; 2017 Feb; 213(3):1222-1241. PubMed ID: 27735062
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Kinetic studies on electron transfer and interaction between nitrogenase components from Azotobacter vinelandii.
    Hageman RV; Burris RH
    Biochemistry; 1978 Oct; 17(20):4117-24. PubMed ID: 708696
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Molybdenum cofactors from molybdoenzymes and in vitro reconstitution of nitrogenase and nitrate reductase.
    Pienkos PT; Shah VK; Brill WJ
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5468-71. PubMed ID: 146198
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of iron limitation on growth, siderophore production, and expression of outer membrane proteins of Vibrio cholerae.
    Sigel SP; Payne SM
    J Bacteriol; 1982 Apr; 150(1):148-55. PubMed ID: 6460753
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Distribution of molybdenum99 in cell-free preparations of Azotobacter vinelandii.
    BULEN WA; KEELER RF; VARNER JE
    J Bacteriol; 1956 Sep; 72(3):394-6. PubMed ID: 13366934
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.