These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7086181)

  • 1. Collagen fibrillogenesis in tissues, in a solution and from modeling: a synthesis.
    Trelstad RL; Birk DE; Silver FH
    J Invest Dermatol; 1982 Jul; 79 Suppl 1():109s-112s. PubMed ID: 7086181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The special state of the fibril end: site of growth, point of cell surface attachment and possible site for platelet interaction.
    Trelstad RL
    Suppl Thromb Haemost; 1978; 63():153-60. PubMed ID: 262322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen fibrillogenesis in situ: fibril segments are intermediates in matrix assembly.
    Birk DE; Zycband EI; Winkelmann DA; Trelstad RL
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4549-53. PubMed ID: 2734306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction.
    Graham HK; Holmes DF; Watson RB; Kadler KE
    J Mol Biol; 2000 Jan; 295(4):891-902. PubMed ID: 10656798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development.
    Birk DE; Nurminskaya MV; Zycband EI
    Dev Dyn; 1995 Mar; 202(3):229-43. PubMed ID: 7780173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen fibrillogenesis: intermediate aggregates and suprafibrillar order.
    Trelstad RL; Hayashi K; Gross J
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):4027-31. PubMed ID: 1069288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagen fibril formation.
    Kadler KE; Holmes DF; Trotter JA; Chapman JA
    Biochem J; 1996 May; 316 ( Pt 1)(Pt 1):1-11. PubMed ID: 8645190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of type V collagen using a dominant-negative strategy alters the regulation of fibrillogenesis and results in the loss of corneal-specific fibril morphology.
    Marchant JK; Hahn RA; Linsenmayer TF; Birk DE
    J Cell Biol; 1996 Dec; 135(5):1415-26. PubMed ID: 8947562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures.
    Birk DE; Zycband EI; Woodruff S; Winkelmann DA; Trelstad RL
    Dev Dyn; 1997 Mar; 208(3):291-8. PubMed ID: 9056634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of collagen fibril segments from chicken embryo cornea, dermis and tendon.
    Birk DE; Hahn RA; Linsenmayer CY; Zycband EI
    Matrix Biol; 1996 Jul; 15(2):111-8. PubMed ID: 8837012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter.
    Birk DE; Fitch JM; Babiarz JP; Doane KJ; Linsenmayer TF
    J Cell Sci; 1990 Apr; 95 ( Pt 4)():649-57. PubMed ID: 2384532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tendon collagen fibrillogenesis: intracellular subassemblies and cell surface changes associated with fibril growth.
    Trelstad RL; Hayashi K
    Dev Biol; 1979 Aug; 71(2):228-42. PubMed ID: 499658
    [No Abstract]   [Full Text] [Related]  

  • 13. Development of tendon structure and function: regulation of collagen fibrillogenesis.
    Zhang G; Young BB; Ezura Y; Favata M; Soslowsky LJ; Chakravarti S; Birk DE
    J Musculoskelet Neuronal Interact; 2005 Mar; 5(1):5-21. PubMed ID: 15788867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the fibril structure of corneal and tendon collagen. An electron microscopy and X-ray diffraction investigation.
    Marchini M; Morocutti M; Ruggeri A; Koch MH; Bigi A; Roveri N
    Connect Tissue Res; 1986; 15(4):269-81. PubMed ID: 2946550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography.
    Landis WJ; Hodgens KJ; Arena J; Song MJ; McEwen BF
    Microsc Res Tech; 1996 Feb; 33(2):192-202. PubMed ID: 8845518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly of the tendon extracellular matrix during development.
    Birk DE; Zycband E
    J Anat; 1994 Jun; 184 ( Pt 3)(Pt 3):457-63. PubMed ID: 7928635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation.
    Birk DE; Trelstad RL
    J Cell Biol; 1986 Jul; 103(1):231-40. PubMed ID: 3722266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteoglycan:collagen interactions and subfibrillar structure in collagen fibrils. Implications in the development and ageing of connective tissues.
    Scott JE
    J Anat; 1990 Apr; 169():23-35. PubMed ID: 2384335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibroblasts create compartments in the extracellular space where collagen polymerizes into fibrils and fibrils associate into bundles.
    Birk DE; Trelstad RL
    Ann N Y Acad Sci; 1985; 460():258-66. PubMed ID: 3868950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen fibril formation during embryogenesis.
    Fleischmajer R; Olsen BR; Timpl R; Perlish JS; Lovelace O
    Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3354-8. PubMed ID: 6574488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.