These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7086437)

  • 1. Rate and duration of stimulation determine presynaptic effects of haloperidol on dopaminergic neurons.
    Hoffmann IS; Cubeddu LX
    J Neurochem; 1982 Aug; 39(2):585-8. PubMed ID: 7086437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in sensitivity of release modulating dopamine autoreceptors after chronic treatment with haloperidol.
    Nowak JZ; Arbilla S; Galzin AM; Langer SZ
    J Pharmacol Exp Ther; 1983 Aug; 226(2):558-64. PubMed ID: 6875865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency-dependent release of acetylcholine and dopamine from rabbit striatum: its modulation by dopaminergic receptors.
    Cubeddu LX; Hoffmann IS
    J Neurochem; 1983 Jul; 41(1):94-101. PubMed ID: 6864232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine autoreceptors modulate dopamine release from the prefrontal cortex.
    Talmaciu RK; Hoffmann IS; Cubeddu LX
    J Neurochem; 1986 Sep; 47(3):865-70. PubMed ID: 3734802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interneurones are probably not involved in the presynaptic dopaminergic control of dopamine release in rabbit caudate nucleus.
    Jackisch R; Zumstein A; Hertting G; Starke K
    Naunyn Schmiedebergs Arch Pharmacol; 1980 Nov; 314(2):129-33. PubMed ID: 7453832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation by endogenous dopamine of the release of acetylcholine in the caudate nucleus of the rabbit.
    Hertting G; Zumstein A; Jackisch R; Hoffmann I; Starke K
    Naunyn Schmiedebergs Arch Pharmacol; 1980; 315(2):111-7. PubMed ID: 7207641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained high release at rapid stimulation rates and reduced functional autoreceptors characterize prefrontal cortex dopamine terminals.
    Hoffmann IS; Talmaciu RK; Ferro CP; Cubeddu LX
    J Pharmacol Exp Ther; 1988 Jun; 245(3):761-72. PubMed ID: 3385641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphetamine inhibits the electrically evoked release of [3H]dopamine from slices of the rabbit caudate.
    Kamal LA; Arbilla S; Galzin AM; Langer SZ
    J Pharmacol Exp Ther; 1983 Nov; 227(2):446-58. PubMed ID: 6631724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathways of dopamine metabolism in the rabbit caudate nucleus in vitro.
    Zumstein A; Karduck W; Starke K
    Naunyn Schmiedebergs Arch Pharmacol; 1981 Jun; 316(3):205-17. PubMed ID: 7254365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between endogenous dopamine and dopamine agonists at release modulatory receptors: multiple effects of neuronal uptake inhibitors on transmitter release.
    Hoffmann IS; Talmaciu RK; Cubeddu LX
    J Pharmacol Exp Ther; 1986 Aug; 238(2):437-46. PubMed ID: 2942676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of neuroleptics on release of 3H-dopamine from slices of rat corpus striatum.
    Dismukes K; Mulder AH
    Naunyn Schmiedebergs Arch Pharmacol; 1977 Mar; 297(1):23-9. PubMed ID: 16224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative dopamine-acetylcholine interactions in the ventral and dorsal striatum of rabbit and rat brain.
    Guevara BH; Talmaciu RK; Hoffmann IS; Cubeddu LX
    Brain Res; 1996 Sep; 733(1):105-7. PubMed ID: 8891253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid desensitization of presynaptic dopamine autoreceptors during exposure to exogenous dopamine.
    Arbilla S; Nowak JZ; Langer SZ
    Brain Res; 1985 Jun; 337(1):11-7. PubMed ID: 4005600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depolarisation-evoked release of dopamine and histamine from brain tissue and studies on presynaptic dopamine-histamine interaction.
    Nowak JZ
    Pol J Pharmacol Pharm; 1985; 37(3):359-81. PubMed ID: 2866503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are presynaptic dopamine autoreceptors and postsynaptic dopamine receptors in the rabbit caudate nucleus pharmacologically different?
    Helmreich I; Reimann W; Hertting G; Starke K
    Neuroscience; 1982 Jun; 7(6):1559-66. PubMed ID: 6289174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of the effects of apomorphine and haloperidol on the release of [3H]-dopamine and [3H]-noradrenaline from rabbit brain slices.
    Kelly MJ
    Arch Int Pharmacodyn Ther; 1981 Mar; 250(1):18-29. PubMed ID: 7271378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the sensitivity to apomorphine of dopamine receptors modulating dopamine and acetylcholine release after chronic treatment with bromocriptine or haloperidol.
    Cubeddu LX; Hoffmann IS; James MK; Niedzwiecki DM
    J Pharmacol Exp Ther; 1983 Sep; 226(3):680-5. PubMed ID: 6887008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic effects of tetrahydropapaveroline on striatal dopaminergic neurons.
    Hoffman IS; Cubeddu LX
    J Pharmacol Exp Ther; 1982 Jan; 220(1):16-22. PubMed ID: 7053412
    [No Abstract]   [Full Text] [Related]  

  • 19. Uptake and release of [3H]dopamine by the median eminence: evidence for presynaptic dopaminergic receptors and for dopaminergic feedback inhibition.
    Sarkar DK; Gottschall PE; Meites J; Horn A; Dow RC; Fink G; Cuello AC
    Neuroscience; 1983 Nov; 10(3):821-30. PubMed ID: 6646431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of haloperidol and apomorphine on catecholamine metabolism in brain slices. Reserpine-like effects of haloperidol.
    Delanoy RL; Dunn AJ
    Biochem Pharmacol; 1982 Oct; 31(20):3297-305. PubMed ID: 7150356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.