These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 708693)

  • 1. Mechanism of pigeon liver malic enzyme. Reactivity of class II sulfhydryl groups as a conformational probe for the "half-of-the-sites" reactivity of the enzyme with bromopyruvate.
    Pry TA; Hsu RY
    Biochemistry; 1978 Sep; 17(19):4024-9. PubMed ID: 708693
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanism of pigeon liver malic enzyme: kinetics, specificity, and half-site stoichiometry of the alkylation of a cysteinyl residue by the substrate-inhibitor bromopyruvate.
    Chang GG; Hsu RY
    Biochemistry; 1977 Jan; 16(2):311-20. PubMed ID: 13810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of pigeon liver malic enzyme. Modification of sulfhydryl groups by 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide.
    Tang CL; Hsu RY
    J Biol Chem; 1974 Jun; 249(12):3916-22. PubMed ID: 4857984
    [No Abstract]   [Full Text] [Related]  

  • 4. Nonfunctional nature of sulfhydryl groups for pigeon liver malic enzyme.
    Chang GG; Chueh SH
    Int J Pept Protein Res; 1980 Oct; 16(4):321-6. PubMed ID: 7461912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The substrate analog bromopyruvate as a substrate, an inhibitor and an alkylating agent of malic enzyme of pigeon liver.
    Chang GG; Hsu RY
    Biochem Biophys Res Commun; 1973 Dec; 55(3):580-7. PubMed ID: 4148585
    [No Abstract]   [Full Text] [Related]  

  • 6. The pyruvate-proton exchange reaction of malic enzyme from pigeon liver.
    Bratcher SC; Hsu RY
    Biochim Biophys Acta; 1982 Mar; 702(1):54-60. PubMed ID: 7066344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of dissociation constants for enzyme-reactant complexes for NAD-malic enzyme by modulation of the thiol inactivation rate.
    Kiick DM; Allen BL; Rao JG; Harris BG; Cook PF
    Biochemistry; 1984 Nov; 23(23):5454-9. PubMed ID: 6509029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium substrate binding studies of the malic enzyme of pigeon liver. Equivalence of nucleotide sites and anticooperativity associated with the binding of L-malate to the enzyme-manganese(II)-reduced nicotinamide adenine dinucleotide phosphate ternary complex.
    Pry TA; Hsu RY
    Biochemistry; 1980 Mar; 19(5):951-62. PubMed ID: 7356971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on regulatory functions of malic enzymes. VII. Structural and functional characteristics of sulfhydryl groups in NADP-linked malic enzyme from Escherichia coli W.
    Iwakura M; Tokushige M; Katsuki H
    J Biochem; 1979 Nov; 86(5):1239-49. PubMed ID: 42642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of pigeon liver malic enzyme modification of histidyl residues by ethoxyformic anhydride.
    Chang GG; Hsu RY
    Biochim Biophys Acta; 1977 Aug; 483(2):228-35. PubMed ID: 19063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on regulatory functions of malic enzymes. IV. Effects of sulfhydryl group modification on the catalytic function of NAD-linked malic enzyme from Escherichia coli.
    Yamaguchi M
    J Biochem; 1979 Aug; 86(2):325-33. PubMed ID: 225306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible dissociation of the catalytically active subunits of pigeon liver malic enzyme.
    Chang GG; Huang TM; Chang TC
    Biochem J; 1988 Aug; 254(1):123-30. PubMed ID: 3140794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atypical reaction of 'essential' sulfhydryl groups of malic enzyme with 2-nitro-5-thiocyanobenzoate and 2,4-dinitrophenylthiocyanate.
    Reddy VA
    Biochim Biophys Acta; 1983 Mar; 743(2):268-80. PubMed ID: 6824705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic studies of the malic enzyme of pigeon liver. "Half-of-the-sites" behavior of the enzyme tetramer in catalysis and substrate inhibition.
    Hsu RY; Pry RA
    Biochemistry; 1980 Mar; 19(5):962-8. PubMed ID: 7356972
    [No Abstract]   [Full Text] [Related]  

  • 15. Sulfhydryl group reactivity in the Escherichia coli CoA transferase.
    Sramek SJ; Frerman FE; Adams MB
    Arch Biochem Biophys; 1977 Jun; 181(2):516-24. PubMed ID: 332080
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanism of malic enzyme from pigeon liver. Magnetic resonance and kinetic studies of the role of Mn2+.
    Hsu RY; Mildvan AS; Chang G; Fung C
    J Biol Chem; 1976 Nov; 251(21):6574-83. PubMed ID: 988026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidized NADP as a potential active-site-directed reagent of pigeon liver malic enzyme.
    Chang GG; Huang T
    Biochem Biophys Res Commun; 1979 Feb; 86(3):829-36. PubMed ID: 34398
    [No Abstract]   [Full Text] [Related]  

  • 18. Involvement of Phe19 in the Mn(2+)-L-malate binding and the subunit interactions of pigeon liver malic enzyme.
    Chou WY; Liu MY; Huang SM; Chang GG
    Biochemistry; 1996 Jul; 35(30):9873-9. PubMed ID: 8703961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pigeon liver malic enzyme. V. Kinetic studies.
    Hsu RY; Lardy HA; Cleland WW
    J Biol Chem; 1967 Nov; 242(22):5315-22. PubMed ID: 4383636
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanism of pigeon liver malic enzyme. Formation of L-lactate from L-malate, and effects of modification of protein thiol groups on malic enzyme, oxalacetate, and pyruvate reductase activities.
    Hsu RY
    J Biol Chem; 1970 Dec; 245(24):6675-82. PubMed ID: 4394858
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.