These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 708721)

  • 81. Infrared spectroscopic demonstration of a conformational change in bacteriorhodopsin involved in proton pumping.
    Ormos P
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):473-7. PubMed ID: 1846442
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin.
    Balashov SP; Imasheva ES; Ebrey TG; Chen N; Menick DR; Crouch RK
    Biochemistry; 1997 Jul; 36(29):8671-6. PubMed ID: 9289012
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Surface charge changes in purple membranes and the photoreaction cycle of bacteriorhodopsin.
    Carmeli C; Quintanilha AT; Packer L
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4707-11. PubMed ID: 6254038
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Chromophore equilibria in bacteriorhodopsin.
    Fischer U; Oesterhelt D
    Biophys J; 1979 Nov; 28(2):211-30. PubMed ID: 122264
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Electrogenic proton-pumping capabilities of the m-fast and m-slow photocycles of bacteriorhodopsin.
    Hendler RW; Meuse CW
    Biochemistry; 2008 May; 47(19):5396-405. PubMed ID: 18422349
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Effects of the crystalline structure of purple membrane on the kinetics and energetics of the bacteriorhodopsin photocycle.
    Váró G; Lanyi JK
    Biochemistry; 1991 Jul; 30(29):7165-71. PubMed ID: 1854728
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Two groups control light-induced Schiff base deprotonation and the proton affinity of Asp85 in the Arg82 his mutant of bacteriorhodopsin.
    Imasheva ES; Balashov SP; Ebrey TG; Chen N; Crouch RK; Menick DR
    Biophys J; 1999 Nov; 77(5):2750-63. PubMed ID: 10545374
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Photochemical cycle and light-dark adaptation of monomeric and aggregated bacteriorhodopsin in various lipid environments.
    Dencher NA; Kohl KD; Heyn MP
    Biochemistry; 1983 Mar; 22(6):1323-34. PubMed ID: 6838856
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Fourier transform infrared evidence for proline structural changes during the bacteriorhodopsin photocycle.
    Rothschild KJ; He YW; Gray D; Roepe PD; Pelletier SL; Brown RS; Herzfeld J
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9832-5. PubMed ID: 2602377
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base.
    Otto H; Marti T; Holz M; Mogi T; Stern LJ; Engel F; Khorana HG; Heyn MP
    Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1018-22. PubMed ID: 2153966
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Effect of iodination of the purple membrane on the photocycle of bacteriorhodopsin.
    Scherrer P; Packer L; Seltzer S
    Arch Biochem Biophys; 1981 Dec; 212(2):589-601. PubMed ID: 7325680
    [No Abstract]   [Full Text] [Related]  

  • 92. Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin.
    Otto H; Marti T; Holz M; Mogi T; Lindau M; Khorana HG; Heyn MP
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9228-32. PubMed ID: 2556706
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Reconstitution of delipidated bacteriorhodopsin with endogenous polar lipids.
    Lind C; Höjeberg B; Khorana HG
    J Biol Chem; 1981 Aug; 256(16):8298-305. PubMed ID: 7263654
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Pathways of proton release in the bacteriorhodopsin photocycle.
    Zimányi L; Váró G; Chang M; Ni B; Needleman R; Lanyi JK
    Biochemistry; 1992 Sep; 31(36):8535-43. PubMed ID: 1327104
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Membrane-mediated control of the bacteriorhodopsin photocycle.
    Mukhopadhyay AK; Bose S; Hendler RW
    Biochemistry; 1994 Sep; 33(36):10889-95. PubMed ID: 8086405
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Photochemistry and fluorescence of bacteriorhodopsin excited in its 280-nm absorption band.
    Kalisky O; Feitelson J; Ottolenghi M
    Biochemistry; 1981 Jan; 20(1):205-9. PubMed ID: 7470473
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Bacteriorhodopsin D85N: three spectroscopic species in equilibrium.
    Turner GJ; Miercke LJ; Thorgeirsson TE; Kliger DS; Betlach MC; Stroud RM
    Biochemistry; 1993 Feb; 32(5):1332-7. PubMed ID: 8448142
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Branching reactions in the photocycle of bacteriorhodopsin.
    Korenstein R; Hess B; Kuschmitz D
    FEBS Lett; 1978 Sep; 93(2):266-70. PubMed ID: 710580
    [No Abstract]   [Full Text] [Related]  

  • 99. NMR structural analysis of a membrane protein: bacteriorhodopsin peptide backbone orientation and motion.
    Lewis BA; Harbison GS; Herzfeld J; Griffin RG
    Biochemistry; 1985 Aug; 24(17):4671-9. PubMed ID: 4063350
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Exploring the function of Tyr83 in bacteriorhodopsin: features of the Y83F and Y83N mutants.
    Imasheva ES; Lu M; Balashov SP; Ebrey TG; Chen Y; Ablonczy Z; Menick DR; Crouch RK
    Biochemistry; 2001 Nov; 40(44):13320-30. PubMed ID: 11683642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.