These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66 related articles for article (PubMed ID: 708764)
1. Human spectrin. II. An electro-optic study. Mikkelsen A; Elgsaeter A Biochim Biophys Acta; 1978 Sep; 536(1):245-51. PubMed ID: 708764 [TBL] [Abstract][Full Text] [Related]
2. Human spectrin. V. A comparative electro-optic study of heterotetramers and heterodimers. Mikkelsen A; Elgsaeter A Biochim Biophys Acta; 1981 Mar; 668(1):74-80. PubMed ID: 7236710 [TBL] [Abstract][Full Text] [Related]
3. Differences in the electric birefringence of spectrin dimers and tetramers as shown by the fast reversing electric pulse method. Roux B; Cassoly R Biophys Chem; 1982 Nov; 16(3):193-8. PubMed ID: 7171714 [TBL] [Abstract][Full Text] [Related]
4. An electro-optic study of human erythrocyte spectrin dimers. The presence of calcium ions does not alter spectrin flexibility. Mikkelsen A; Stokke BT; Elgsaeter A Biochim Biophys Acta; 1984 Apr; 786(1-2):95-102. PubMed ID: 6712961 [TBL] [Abstract][Full Text] [Related]
5. Human spectrin. I. A classical light scattering study. Elgsaeter A Biochim Biophys Acta; 1978 Sep; 536(1):235-44. PubMed ID: 708763 [TBL] [Abstract][Full Text] [Related]
6. Human spectrin. VI. A viscometric study. Stokke BT; Elgsaeter A Biochim Biophys Acta; 1981 Feb; 640(3):640-5. PubMed ID: 7213696 [TBL] [Abstract][Full Text] [Related]
7. Electric birefringence of recombinant spectrin segments 14, 14-15, 14-16, and 14-17 from Drosophila alpha-spectrin. Bjørkøy A; Mikkelsen A; Elgsaeter A Biochim Biophys Acta; 1999 Mar; 1430(2):323-40. PubMed ID: 10082960 [TBL] [Abstract][Full Text] [Related]
8. The shape of spectrin molecules from human erythrocyte membranes. Shotton D; Burke B; Branton D Biochim Biophys Acta; 1978 Sep; 536(1):313-7. PubMed ID: 708771 [TBL] [Abstract][Full Text] [Related]
9. Transient electric birefringence of human erythroid spectrin dimers and tetramers at ionic strengths of 4 mM and 53 mM. Bjørkøy A; Mikkelsen A; Elgsaeter A Eur Biophys J; 1999; 28(4):269-78. PubMed ID: 10394621 [TBL] [Abstract][Full Text] [Related]
10. Salt and temperature-dependent conformation changes in spectrin from human erythrocyte membranes. Ralston GB; Dunbar JC Biochim Biophys Acta; 1979 Jul; 579(1):20-30. PubMed ID: 465530 [TBL] [Abstract][Full Text] [Related]
11. Hydrodynamic characterization of the heterodimer of spectrin. Dunbar JC; Ralston GB Biochim Biophys Acta; 1981 Jan; 667(1):177-84. PubMed ID: 7213794 [TBL] [Abstract][Full Text] [Related]
12. The concentration dependence of the activity coefficient of the human spectrin heterodimer. A quantitative test of the Adams-Fujita approximation. Ralston GB Biophys Chem; 1994 Sep; 52(1):51-61. PubMed ID: 7948711 [TBL] [Abstract][Full Text] [Related]
18. Expression and assembly of the erythroid membrane-skeletal proteins ankyrin (goblin) and spectrin in the morphogenesis of chicken neurons. Lazarides E; Nelson WJ J Cell Biochem; 1985; 27(4):423-41. PubMed ID: 2581981 [TBL] [Abstract][Full Text] [Related]
19. ESR studies of the erythrocyte membrane skeletal protein network: influence of the state of aggregation of spectrin on the physical state of membrane proteins, bilayer lipids, and cell surface carbohydrates. Farmer BT; Harmon TM; Butterfield DA Biochim Biophys Acta; 1985 Dec; 821(3):420-30. PubMed ID: 3000446 [TBL] [Abstract][Full Text] [Related]