These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 708816)

  • 1. Magnetic relaxation analysis of dynamic processes in macromolecules in the pico- to microsecond range.
    King R; Maas R; Gassner M; Nanda RK; Conover WW
    Biophys J; 1978 Oct; 24(1):103-17. PubMed ID: 708816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The physical basis of model-free analysis of NMR relaxation data from proteins and complex fluids.
    Halle B
    J Chem Phys; 2009 Dec; 131(22):224507. PubMed ID: 20001057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds.
    Krushelnitsky A; Reichert D; Saalwächter K
    Acc Chem Res; 2013 Sep; 46(9):2028-36. PubMed ID: 23875699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for spin I = 1.
    Nilsson T; Halle B
    J Chem Phys; 2012 Aug; 137(5):054503. PubMed ID: 22894360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule.
    Iwahara J; Schwieters CD; Clore GM
    J Am Chem Soc; 2004 May; 126(18):5879-96. PubMed ID: 15125681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical study of rotational diffusion models for rod-shaped viruses. The influence of motion on 31P nuclear magnetic resonance lineshapes and transversal relaxation.
    Magusin PC; Hemminga MA
    Biophys J; 1993 Jun; 64(6):1851-60. PubMed ID: 8369411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR techniques used with very large biological macromolecules in solution.
    Wider G
    Methods Enzymol; 2005; 394():382-98. PubMed ID: 15808229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Markov model for relaxation and exchange in NMR spectroscopy.
    Abergel D; Palmer AG
    J Phys Chem B; 2005 Mar; 109(11):4837-44. PubMed ID: 16863137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of slow interdomain motion of macromolecules using NMR relaxation data.
    Baber JL; Szabo A; Tjandra N
    J Am Chem Soc; 2001 May; 123(17):3953-9. PubMed ID: 11457145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of intermediate exchange phenomena.
    Kempf JG; Loria JP
    Methods Mol Biol; 2004; 278():185-231. PubMed ID: 15317998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond the decoupling approximation in the model free approach for the interpretation of NMR relaxation of macromolecules in solution.
    Vugmeyster L; Raleigh DP; Palmer AG; Vugmeister BE
    J Am Chem Soc; 2003 Jul; 125(27):8400-4. PubMed ID: 12837113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules.
    Palmer AG; Kroenke CD; Loria JP
    Methods Enzymol; 2001; 339():204-38. PubMed ID: 11462813
    [No Abstract]   [Full Text] [Related]  

  • 13. Backbone motions in a crystalline protein from field-dependent 2H-NMR relaxation and line-shape analysis.
    Mack JW; Usha MG; Long J; Griffin RG; Wittebort RJ
    Biopolymers; 2000 Jan; 53(1):9-18. PubMed ID: 10644947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation.
    Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG
    Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements.
    Dufourc EJ; Mayer C; Stohrer J; Althoff G; Kothe G
    Biophys J; 1992 Jan; 61(1):42-57. PubMed ID: 1540698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow internal protein dynamics from water (1)H magnetic relaxation dispersion.
    Sunde EP; Halle B
    J Am Chem Soc; 2009 Dec; 131(51):18214-5. PubMed ID: 19954186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-independent analysis of the breadth of the positional distribution of disordered groups in macromolecules from order parameters for long, variable-length vectors using NMR paramagnetic relaxation enhancement.
    Iwahara J; Clore GM
    J Am Chem Soc; 2010 Sep; 132(38):13346-56. PubMed ID: 20795737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual lack of internal mobility and fast overall tumbling in oxidized flavodoxin from Anacystis nidulans.
    Zhang P; Dayie KT; Wagner G
    J Mol Biol; 1997 Sep; 272(3):443-55. PubMed ID: 9325102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach to visualizing spectral density functions and deriving motional correlation time distributions: applications to an alpha-helix-forming peptide and to a well-folded protein.
    Idiyatullin D; Daragan VA; Mayo KH
    J Magn Reson; 2001 Sep; 152(1):132-48. PubMed ID: 11531372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship of DNA structure to internal dynamics: correlation of helical parameters from NOE-based NMR solution structures of d(GCGTACGC)(2) and d(CGCTAGCG)(2) with (13)C order parameters implies conformational coupling in dinucleotide units.
    Isaacs RJ; Spielmann HP
    J Mol Biol; 2001 Mar; 307(2):525-40. PubMed ID: 11254380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.