These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 7088176)

  • 1. Contrast gain control in the cat visual cortex.
    Ohzawa I; Sclar G; Freeman RD
    Nature; 1982 Jul; 298(5871):266-8. PubMed ID: 7088176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrast gain control in the cat's visual system.
    Ohzawa I; Sclar G; Freeman RD
    J Neurophysiol; 1985 Sep; 54(3):651-67. PubMed ID: 4045542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer characteristics of X LGN neurons in cats reared with early discordant binocular vision.
    Cheng H; Chino YM; Smith EL; Hamamoto J; Yoshida K
    J Neurophysiol; 1995 Dec; 74(6):2558-72. PubMed ID: 8747214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat.
    Martin KA; Whitteridge D
    J Physiol; 1984 Aug; 353():463-504. PubMed ID: 6481629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation-induced alteration of the relation between response amplitude and contrast in cat striate cortical neurones.
    Dean AF
    Vision Res; 1983; 23(3):249-56. PubMed ID: 6868400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral geniculate relay of slowly conducting retinal afferents to cat visual cortex.
    Cleland BG; Levick WR; Morstyn R; Wagner HG
    J Physiol; 1976 Feb; 255(1):299-320. PubMed ID: 1255520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern evoked potentials from the cat's retina.
    Ohzawa I; Freeman RD
    J Neurophysiol; 1985 Sep; 54(3):691-700. PubMed ID: 4045545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maintained activity of single neurons in the cat visual cortex at different levels of retinal adaptation.
    Sanseverino ER; Galletti C; Maioli MG
    Brain Res; 1977 Mar; 124(2):251-61. PubMed ID: 843947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tonic responses to steady diffuse illumination of the maintained neuronal discharge in the cat central visual pathways.
    Corazza R; Tradardi V; Umiltà C
    Brain Res; 1971 Apr; 27(2):241-50. PubMed ID: 5552169
    [No Abstract]   [Full Text] [Related]  

  • 10. The variability of discharge of simple cells in the cat striate cortex.
    Dean AF
    Exp Brain Res; 1981; 44(4):437-40. PubMed ID: 7308358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of adapting speed on speed and contrast coding in the primary visual cortex of the cat.
    Hietanen MA; Crowder NA; Price NS; Ibbotson MR
    J Physiol; 2007 Oct; 584(Pt 2):451-62. PubMed ID: 17702823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separable evoked retinal and cortical potentials from each major visual pathway: preliminary results.
    Berninger TA; Arden GB; Hogg CR; Frumkes T
    Br J Ophthalmol; 1989 Jul; 73(7):502-11. PubMed ID: 2757990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex.
    Albrecht DG; Farrar SB; Hamilton DB
    J Physiol; 1984 Feb; 347():713-39. PubMed ID: 6707974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrast adaptation in human retina and cortex.
    Heinrich TS; Bach M
    Invest Ophthalmol Vis Sci; 2001 Oct; 42(11):2721-7. PubMed ID: 11581221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomy and physiology of the afferent visual system.
    Prasad S; Galetta SL
    Handb Clin Neurol; 2011; 102():3-19. PubMed ID: 21601061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial frequency-specific contrast adaptation originates in the primary visual cortex.
    Duong T; Freeman RD
    J Neurophysiol; 2007 Jul; 98(1):187-95. PubMed ID: 17428911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal and Nonretinal Contributions to Extraclassical Surround Suppression in the Lateral Geniculate Nucleus.
    Fisher TG; Alitto HJ; Usrey WM
    J Neurosci; 2017 Jan; 37(1):226-235. PubMed ID: 28053044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Control of afferentation dynamics at different levels of the visual system].
    Shevelev IA
    Biofizika; 1971; 16(2):320-6. PubMed ID: 5572259
    [No Abstract]   [Full Text] [Related]  

  • 19. Visual spatial summation in macaque geniculocortical afferents.
    Sceniak MP; Chatterjee S; Callaway EM
    J Neurophysiol; 2006 Dec; 96(6):3474-84. PubMed ID: 16928793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual Receptive Field Properties of Neurons in the Mouse Lateral Geniculate Nucleus.
    Tang J; Ardila Jimenez SC; Chakraborty S; Schultz SR
    PLoS One; 2016; 11(1):e0146017. PubMed ID: 26741374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.