These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 7089686)

  • 1. A new technique for intraoperative monitoring of spinal cord function: multichannel recording of spinal cord and subcortical evoked potentials.
    Lueders H; Gurd A; Hahn J; Andrish J; Weiker G; Klem G
    Spine (Phila Pa 1976); 1982; 7(2):110-5. PubMed ID: 7089686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord monitoring. Electrophysiological measures of sensory and motor function during spinal surgery.
    Machida M; Weinstein SL; Yamada T; Kimura J
    Spine (Phila Pa 1976); 1985 Jun; 10(5):407-13. PubMed ID: 4049106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of sensory-evoked potentials recorded from the human occiput for intraoperative physiologic monitoring of the spinal cord.
    Hurlbert RJ; Fehlings MG; Moncada MS
    Spine (Phila Pa 1976); 1995 Nov; 20(21):2318-27. PubMed ID: 8553120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A system for the electrophysiological monitoring of the spinal cord during operations for scoliosis.
    Jones SJ; Edgar MA; Ransford AO; Thomas NP
    J Bone Joint Surg Br; 1983 Mar; 65(2):134-9. PubMed ID: 6826615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal cord monitoring: current status and new developments.
    Schramm J
    Cent Nerv Syst Trauma; 1985; 2(3):207-27. PubMed ID: 3914921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of anterior cervical spinal cord function.
    Shinomiya K; Mochida K; Komori H; Mutoh N; Okawa A
    J Spinal Disord; 1996 Jun; 9(3):187-94. PubMed ID: 8854272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re. Transcranial motor-evoked potentials combined with response recording through compound muscle action potentials as the sole modality of spinal cord monitoring in spinal deformity surgery. Hsu, Cree, Lagopolous and Cummine. Spine. 33(10). 1100-1106.
    Norton JA
    Spine (Phila Pa 1976); 2008 Nov; 33(23):2576. PubMed ID: 18978598
    [No Abstract]   [Full Text] [Related]  

  • 8. The application of somatosensory-evoked potentials in orthopedic spine surgery.
    Mostegl A; Bauer R
    Arch Orthop Trauma Surg (1978); 1984; 103(3):179-84. PubMed ID: 6497608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraoperative spinal somatosensory evoked potential monitoring.
    Dinner DS; Lüders H; Lesser RP; Morris HH; Barnett G; Klem G
    J Neurosurg; 1986 Dec; 65(6):807-14. PubMed ID: 3772479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femoral artery ischemia during spinal scoliosis surgery detected by posterior tibial nerve somatosensory-evoked potential monitoring.
    Vossler DG; Stonecipher T; Millen MD
    Spine (Phila Pa 1976); 2000 Jun; 25(11):1457-9. PubMed ID: 10828931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcortical somatosensory evoked potentials after median nerve and posterior tibial nerve stimulation in high cervical cord compression of achondroplasia.
    Li L; Müller-Forell W; Oberman B; Boor R
    Brain Dev; 2008 Sep; 30(8):499-503. PubMed ID: 18597963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct recording studies of spinal and subcortical somatosensory evoked potentials in humans after median and posterior tibial nerve stimulations.
    Urasaki E
    Electroencephalogr Clin Neurophysiol Suppl; 1999; 49():62-7. PubMed ID: 10533087
    [No Abstract]   [Full Text] [Related]  

  • 13. Efficacy and limitations of intraoperative spinal cord monitoring using nasopharyngeal tube electrodes.
    Yamamoto N; Kobashi H; Shiba M; Itoh T
    J Neurosurg Spine; 2010 Aug; 13(2):200-10. PubMed ID: 20672955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraoperative somatosensory potential monitoring. A clinical analysis of 127 surgical procedures.
    Mostegl A; Bauer R; Eichenauer M
    Spine (Phila Pa 1976); 1988 Apr; 13(4):396-400. PubMed ID: 3406847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The value of non-invasive spinal cord monitoring during spinal surgery and interventional angiography.
    Dunne JW; Field CM
    Clin Exp Neurol; 1991; 28():199-209. PubMed ID: 1821828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraoperative SEP monitoring in neurosurgery around the brain stem and cervical spinal cord: differential recording of subcortical components.
    Wagner W; Peghini-Halbig L; Mäurer JC; Perneczky A
    J Neurosurg; 1994 Aug; 81(2):213-20. PubMed ID: 8027804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical activity after stimulation of the corticospinal tract in the spinal cord.
    Costa P; Deletis V
    Clin Neurophysiol; 2016 Feb; 127(2):1726-1733. PubMed ID: 26679418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spine and scalp recordings as a function of intensity. A model for changes during spinal cord monitoring.
    Slimp JC; Stolov WC; Wagner TA
    Spine (Phila Pa 1976); 1996 Jan; 21(1):99-103. PubMed ID: 9122771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological recordings during spinal surgery.
    Uematsu S; Tolo V
    Stereotact Funct Neurosurg; 1989; 52(2-4):145-56. PubMed ID: 2727455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The prevention of iatrogenic spinal cord injury utilizing the evoked spinal cord potential.
    Tamaki T; Tsuji H; Inoue S; Kobayashi H
    Int Orthop; 1981; 4(4):313-7. PubMed ID: 7228468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.