These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 7090417)
1. Hepatic microsomal metabolism and macromolecular binding of the antioxidant, N-phenyl-2-naphthylamine. Anderson MM; Mitchum RK; Beland FA Xenobiotica; 1982 Jan; 12(1):31-43. PubMed ID: 7090417 [TBL] [Abstract][Full Text] [Related]
2. Metabolic dephenylation of the rubber antioxidant N-phenyl-2-naphthylamine to carcinogenic 2-naphthylamine in rats. Weiss T; Bolt HM; Schlüter G; Koslitz S; Taeger D; Welge P; Brüning T Arch Toxicol; 2013 Jul; 87(7):1265-72. PubMed ID: 23423714 [TBL] [Abstract][Full Text] [Related]
3. Hepatic and pulmonary microsomal metabolism of naphthalene to glutathione adducts: factors affecting the relative rates of conjugate formation. Buckpitt AR; Bahnson LS; Franklin RB J Pharmacol Exp Ther; 1984 Nov; 231(2):291-300. PubMed ID: 6491983 [TBL] [Abstract][Full Text] [Related]
4. Electron spin resonance study on the metabolism of 2-naphthylamine and 1-naphthylamine in rat liver microsomes. Nakayama T; Kimura T; Kodama M; Nagata C Gan; 1982 Jun; 73(3):382-90. PubMed ID: 6290305 [TBL] [Abstract][Full Text] [Related]
5. The metabolic activation of 2-naphthylamine to mutagens in the Ames test. Tong S; Smith J; Manson D; Gorrod JW; Ioannides C Anticancer Res; 1986; 6(5):1107-12. PubMed ID: 3800318 [TBL] [Abstract][Full Text] [Related]
6. Oxidative microsomal metabolism of 1-nitropyrene and DNA-binding of oxidized metabolites following nitroreduction. Djurić Z; Fifer EK; Howard PC; Beland FA Carcinogenesis; 1986 Jul; 7(7):1073-9. PubMed ID: 3755082 [TBL] [Abstract][Full Text] [Related]
8. N-glucuronidation of carcinogenic aromatic amines catalyzed by rat hepatic microsomal preparations and purified rat liver uridine 5'-diphosphate-glucuronosyltransferases. Green MD; Tephly TR Cancer Res; 1987 Apr; 47(8):2028-31. PubMed ID: 3103910 [TBL] [Abstract][Full Text] [Related]
9. Organ, species, and compound specificity in the metabolic activation of primary aromatic amines. Poupko JM; Radomski T; Santella RM; Radomski JL J Natl Cancer Inst; 1983 Jun; 70(6):1077-80. PubMed ID: 6574277 [TBL] [Abstract][Full Text] [Related]
10. Dephenylation of the rubber chemical N-phenyl-2-naphthylamine to carcinogenic 2-naphthylamine: a classical problem revisited. Weiss T; Brüning T; Bolt HM Crit Rev Toxicol; 2007; 37(7):553-66. PubMed ID: 17674211 [TBL] [Abstract][Full Text] [Related]
11. Metabolic oxidation of carcinogenic arylamines by rat, dog, and human hepatic microsomes and by purified flavin-containing and cytochrome P-450 monooxygenases. Hammons GJ; Guengerich FP; Weis CC; Beland FA; Kadlubar FF Cancer Res; 1985 Aug; 45(8):3578-85. PubMed ID: 4016738 [TBL] [Abstract][Full Text] [Related]
12. Microsomal metabolism of the carcinogen, N-2-fluorenylacetamide, by the mammary gland and liver of female rats. I. Ring- and N-hydroxylations of N-2-fluorenylacetamide. Malejka-Giganti D; Decker RW; Ritter CL; Polovina MR Carcinogenesis; 1985 Jan; 6(1):95-103. PubMed ID: 3967341 [TBL] [Abstract][Full Text] [Related]
13. Comparative biotoxicity of N-Phenyl-1-naphthylamine and N-Phenyl-2-naphthylamine on cyanobacteria Microcystis aeruginosa. Cheng L; He Y; Tian Y; Liu B; Zhang Y; Zhou Q; Wu Z Chemosphere; 2017 Jun; 176():183-191. PubMed ID: 28260658 [TBL] [Abstract][Full Text] [Related]
14. A comparison of the effects of pretreatment with phenobarbitone and 3-methylcholanthrene on the metabolism of aflatoxin B1 by rat liver microsomes and isolated hepatocytes in vitro. Metcalfe SA; Colley PJ; Neal GE Chem Biol Interact; 1981 May; 35(2):145-57. PubMed ID: 6783328 [TBL] [Abstract][Full Text] [Related]
15. Microsomal N-oxidation of the hepatocarcinogen N-methyl-4-aminoazobenzene and the reactivity of N-hydroxy-N-methyl-4-aminoazobenzene. Kadlubar FF; Miller JA; Miller EC Cancer Res; 1976 Mar; 36(3):1196-1206. PubMed ID: 814998 [TBL] [Abstract][Full Text] [Related]
16. The characteristics of the microsomal hydroxylation of tolbutamide. Bélanger PM; St-Hilaire S Can J Physiol Pharmacol; 1991 Mar; 69(3):400-5. PubMed ID: 2059905 [TBL] [Abstract][Full Text] [Related]
17. Evidence for hepatic formation, export and covalent binding of reactive naphthalene metabolites in extrahepatic tissues in vivo. Buckpitt AR; Warren DL J Pharmacol Exp Ther; 1983 Apr; 225(1):8-16. PubMed ID: 6834280 [TBL] [Abstract][Full Text] [Related]
18. Qualitative and quantitative differences in the induction and inhibition of hepatic benzo[a]pyrene metabolism in the rat and hamster. Wroblewski VJ; Gessner T; Olson JR Biochem Pharmacol; 1988 Apr; 37(8):1509-17. PubMed ID: 3358781 [TBL] [Abstract][Full Text] [Related]
19. Metabolic activation of the serotonergic neurotoxin para-chloroamphetamine to chemically reactive intermediates by hepatic and brain microsomal preparations. Miller KJ; Anderholm DC; Ames MM Biochem Pharmacol; 1986 May; 35(10):1737-42. PubMed ID: 3707603 [TBL] [Abstract][Full Text] [Related]
20. Activation of benzo(a)pyrene and 2-acetamidofluorene to mutagens by microsomal preparations from different animal species: role of cytochrome P-450 and P-448. Ioannides C; Parkinson C; Parke DV Xenobiotica; 1981 Oct; 11(10):701-8. PubMed ID: 6275616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]