These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7091245)

  • 1. Structural, mechanical, and material properties of fetal cranial bone.
    Kriewall TJ
    Am J Obstet Gynecol; 1982 Jul; 143(6):707-14. PubMed ID: 7091245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fetal head molding: an investigation utilizing a finite element model of the fetal parietal bone.
    McPherson GK; Kriewall TJ
    J Biomech; 1980; 13(1):17-26. PubMed ID: 7354091
    [No Abstract]   [Full Text] [Related]  

  • 3. Bending properties and ash content of fetal cranial bone.
    Kriewall TJ; McPherson GK; Tsai AC
    J Biomech; 1981; 14(2):73-9. PubMed ID: 7240269
    [No Abstract]   [Full Text] [Related]  

  • 4. Material properties of human infant skull and suture at high rates.
    Coats B; Margulies SS
    J Neurotrauma; 2006 Aug; 23(8):1222-32. PubMed ID: 16928180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material properties of the inner and outer cortical tables of the human parietal bone.
    Peterson J; Dechow PC
    Anat Rec; 2002 Sep; 268(1):7-15. PubMed ID: 12209560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Rate Anisotropic Properties in Human Infant Parietal and Occipital Bone.
    Metcalf RM; Comstock JM; Coats B
    J Biomech Eng; 2021 Jun; 143(6):. PubMed ID: 33564856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age dependent mechanical properties of the infant porcine parietal bone and a correlation to the human.
    Baumer TG; Powell BJ; Fenton TW; Haut RC
    J Biomech Eng; 2009 Nov; 131(11):111006. PubMed ID: 20353257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships of loading history and structural and material characteristics of bone: development of the mule deer calcaneus.
    Skedros JG; Hunt KJ; Bloebaum RD
    J Morphol; 2004 Mar; 259(3):281-307. PubMed ID: 14994328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive determination of ulnar stiffness from mechanical response--in vivo comparison of stiffness and bone mineral content in humans.
    Steele CR; Zhou LJ; Guido D; Marcus R; Heinrichs WL; Cheema C
    J Biomech Eng; 1988 May; 110(2):87-96. PubMed ID: 3379938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Material properties of the skull layers of the primate parietal bone: A single-subject study.
    Zapata U; Wang Q
    PLoS One; 2020; 15(3):e0229244. PubMed ID: 32126093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contribution of the organic matrix to bone's material properties.
    Burr DB
    Bone; 2002 Jul; 31(1):8-11. PubMed ID: 12110405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in biomechanical properties and thickness among frontal and parietal bones in a Japanese sample.
    Torimitsu S; Nishida Y; Takano T; Yajima D; Inokuchi G; Makino Y; Motomura A; Chiba F; Yamaguchi R; Hashimoto M; Hoshioka Y; Iwase H
    Forensic Sci Int; 2015 Jul; 252():190.e1-6. PubMed ID: 25998720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of mechanical stiffness of bone by pQCT measurements: correlation with non-destructive mechanical four-point bending test data.
    Martin DE; Severns AE; Kabo JM
    J Biomech; 2004 Aug; 37(8):1289-93. PubMed ID: 15212935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The elastic modulus of fetal cranial bone: a first step towards an understanding of the biomechanics of fetal head molding.
    McPherson GK; Kriewall TJ
    J Biomech; 1980; 13(1):9-16. PubMed ID: 7354097
    [No Abstract]   [Full Text] [Related]  

  • 15. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of infant bone.
    Ambrose CG; Soto Martinez M; Bi X; Deaver J; Kuzawa C; Schwartz L; Dawson B; Bachim A; Polak U; Lee B; Crowder C
    Bone; 2018 Aug; 113():151-160. PubMed ID: 29800692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stiff and strong compressive properties are associated with brittle post-yield behavior in equine compact bone material.
    Les CM; Stover SM; Keyak JH; Taylor KT; Kaneps AJ
    J Orthop Res; 2002 May; 20(3):607-14. PubMed ID: 12038638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.
    Hage IS; Hamade RF
    J Mater Sci Mater Med; 2017 Sep; 28(9):135. PubMed ID: 28762142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of patient age and bone mineral density on osteotomy fixation stability after hallux valgus surgery: A biomechanical study.
    Hofstaetter SG; Riedl M; Glisson RR; Trieb K; Easley ME
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():255-60. PubMed ID: 26614714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole bone testing in small animals: systematic characterization of the mechanical properties of different rodent bones available for rat fracture models.
    Prodinger PM; Foehr P; Bürklein D; Bissinger O; Pilge H; Kreutzer K; von Eisenhart-Rothe R; Tischer T
    Eur J Med Res; 2018 Feb; 23(1):8. PubMed ID: 29444703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.