These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7091245)

  • 21. Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta.
    Albert C; Jameson J; Tarima S; Smith P; Harris G
    J Biomech; 2017 Nov; 64():103-111. PubMed ID: 28988680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The load-displacement characteristics of neonatal rat cranial sutures.
    McLaughlin E; Zhang Y; Pashley D; Borke J; Yu J
    Cleft Palate Craniofac J; 2000 Nov; 37(6):590-5. PubMed ID: 11108529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accretion of bone quantity and quality in the developing mouse skeleton.
    Miller LM; Little W; Schirmer A; Sheik F; Busa B; Judex S
    J Bone Miner Res; 2007 Jul; 22(7):1037-45. PubMed ID: 17402847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of structural variation on Young's modulus of non-human cancellous bone.
    Hodgskinson R; Currey JD
    Proc Inst Mech Eng H; 1990; 204(1):43-52. PubMed ID: 2353992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Young's moduli and shear moduli in cortical bone.
    Spatz HC; O'Leary EJ; Vincent JF
    Proc Biol Sci; 1996 Mar; 263(1368):287-94. PubMed ID: 8920251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reliability of dietary Ca and P levels and bone mineral content as predictors of bone mechanical properties at various time periods in growing swine.
    Crenshaw TD
    J Nutr; 1986 Nov; 116(11):2155-70. PubMed ID: 3794824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of differences in mineralization on the mechanical properties of bone.
    Currey JD
    Philos Trans R Soc Lond B Biol Sci; 1984 Feb; 304(1121):509-18. PubMed ID: 6142490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High frequency ultrasound prediction of mechanical properties of cortical bone with varying amount of mineral content.
    Kotha SP; DePaula CA; Mann AB; Guzelsu N
    Ultrasound Med Biol; 2008 Apr; 34(4):630-7. PubMed ID: 18055098
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlation of vertebral strength topography with 3-dimensional computed tomographic structure.
    Noshchenko A; Plaseied A; Patel VV; Burger E; Baldini T; Yun L
    Spine (Phila Pa 1976); 2013 Feb; 38(4):339-49. PubMed ID: 22869060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Augmentation of mechanical properties in osteoporotic vertebral bones--a biomechanical investigation of vertebroplasty efficacy with different bone cements.
    Heini PF; Berlemann U; Kaufmann M; Lippuner K; Fankhauser C; van Landuyt P
    Eur Spine J; 2001 Apr; 10(2):164-71. PubMed ID: 11345639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Raman spectral classification of mineral- and collagen-bound water's associations to elastic and post-yield mechanical properties of cortical bone.
    Unal M; Akkus O
    Bone; 2015 Dec; 81():315-326. PubMed ID: 26211992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stiffness of compact bone: effects of porosity and density.
    Schaffler MB; Burr DB
    J Biomech; 1988; 21(1):13-6. PubMed ID: 3339022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethanol and formaldehyde fixation irreversibly alter bones' organic matrix.
    Hammer N; Voigt C; Werner M; Hoffmann F; Bente K; Kunze H; Scholz R; Steinke H
    J Mech Behav Biomed Mater; 2014 Jan; 29():252-8. PubMed ID: 24121826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical testing at the whole-bone level of the femur in immature rats stunted by cornstarch consumption.
    Bozzini C; Picasso EO; Champin GM; Alippi RM; Bozzini CE
    Food Funct; 2013 Oct; 4(10):1543-51. PubMed ID: 24056960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical properties of subchondral bone in the distal aspect of third metacarpal bones from Thoroughbred racehorses.
    Rubio-Martínez LM; Cruz AM; Gordon K; Hurtig MB
    Am J Vet Res; 2008 Nov; 69(11):1423-33. PubMed ID: 18980424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury.
    Margulies SS; Thibault KL
    J Biomech Eng; 2000 Aug; 122(4):364-71. PubMed ID: 11036559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Do Non-collagenous Proteins Affect Skeletal Mechanical Properties?
    Morgan S; Poundarik AA; Vashishth D
    Calcif Tissue Int; 2015 Sep; 97(3):281-91. PubMed ID: 26048282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of bone microstructure on the mechanical properties of skull cortical bone - A combined experimental and computational approach.
    Boruah S; Subit DL; Paskoff GR; Shender BS; Crandall JR; Salzar RS
    J Mech Behav Biomed Mater; 2017 Jan; 65():688-704. PubMed ID: 27743944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence that bone density and the orientation and particle size of the mineral phase have on the mechanical properties of bone.
    Wall JC; Chatterji SK; Jeffery JW
    J Bioeng; 1978; 2(6):517-26. PubMed ID: 753842
    [No Abstract]   [Full Text] [Related]  

  • 40. The biomechanical response of human bone: the influence of bone volume and mineral density.
    Kemper A; Ng T; Duma S
    Biomed Sci Instrum; 2006; 42():284-9. PubMed ID: 16817622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.