These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 7091712)

  • 1. Observations on the development of descending pathways from the brain stem to the spinal cord in the clawed toad Xenopus laevis.
    ten Donkelaar HJ; de Boer-van Huizen R
    Anat Embryol (Berl); 1982; 163(4):461-73. PubMed ID: 7091712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early development of descending pathways from the brain stem to the spinal cord in Xenopus laevis.
    van Mier P; ten Donkelaar HJ
    Anat Embryol (Berl); 1984; 170(3):295-306. PubMed ID: 6335361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and regenerative capacity of descending supraspinal pathways in tetrapods: a comparative approach.
    ten Donkelaar HJ
    Adv Anat Embryol Cell Biol; 2000; 154():iii-ix, 1-145. PubMed ID: 10692782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of motor systems: a comparative approach.
    ten Donkelaar HJ
    Eur J Morphol; 1992; 30(1):9-22. PubMed ID: 1642956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs.
    Sánchez-Camacho C; Martín O; Ten Donkelaar HJ; González A
    J Comp Neurol; 2002 Apr; 446(1):11-24. PubMed ID: 11920716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of descending projections from the brainstem to the spinal cord in the fetal sheep.
    Stockx EM; Anderson CR; Murphy SM; Cooke IR; Berger PJ
    BMC Neurosci; 2007 Jun; 8():40. PubMed ID: 17577416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observations on the development of cerebellar afferents in Xenopus laevis.
    van der Linden JA; ten Donkelaar HJ
    Anat Embryol (Berl); 1987; 176(4):431-9. PubMed ID: 3688451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin.
    Sánchez-Camacho C; Marín O; Ten Donkelaar HJ; González A
    J Comp Neurol; 2001 May; 434(2):186-208. PubMed ID: 11331524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of early brainstem projections to the tail spinal cord of Xenopus.
    Nordlander RH; Baden ST; Ryba TM
    J Comp Neurol; 1985 Jan; 231(4):519-29. PubMed ID: 3968253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional properties of reticulospinal neurons in the early-swimming stage Xenopus embryo.
    van Mier P; ten Donkelaar HJ
    J Neurosci; 1989 Jan; 9(1):25-37. PubMed ID: 2913206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The onset and development of descending pathways to the spinal cord in the chick embryo.
    Okado N; Oppenheim RW
    J Comp Neurol; 1985 Feb; 232(2):143-61. PubMed ID: 3973087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observations on the development of ascending spinal pathways in the clawed toad, Xenopus laevis.
    ten Donkelaar HJ; de Boer-van Huizen R
    Anat Embryol (Berl); 1991; 183(6):589-603. PubMed ID: 1897746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebellar connections in Xenopus laevis. An HRP study.
    Gonzalez A; ten Donkelaar HJ; de Boer-van Huizen R
    Anat Embryol (Berl); 1984; 169(2):167-76. PubMed ID: 6742456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descending pathways to the spinal cord in the himé salmon (landlocked red salmon, Oncorhynchus nerka).
    Oka Y; Satou M; Ueda K
    J Comp Neurol; 1986 Dec; 254(1):91-103. PubMed ID: 3805356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of serotonergic raphespinal projections in Xenopus laevis.
    van Mier P; Joosten HW; van Rheden R; ten Donkelaar HJ
    Int J Dev Neurosci; 1986; 4(5):465-75. PubMed ID: 3455605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cells of origin of pathways descending to the spinal cord in some quadrupedal reptiles.
    ten Donkelaar HJ; Kusuma A; de Boer-Van Huizen R
    J Comp Neurol; 1980 Aug; 192(4):827-51. PubMed ID: 7419757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal ascending pathways in amphibians: cells of origin and main targets.
    Muñoz A; Muñoz M; González A; ten Donkelaar HJ
    J Comp Neurol; 1997 Feb; 378(2):205-28. PubMed ID: 9120061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fasciculus longitudinalis medialis in the lizard Varanus exanthematicus. 1. Interstitiospinal, reticulospinal and vestibulospinal components.
    ten Donkelaar HJ; de Boer-van Huizen R
    Anat Embryol (Berl); 1984; 169(2):177-84. PubMed ID: 6547576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cells of origin of pathways descending to the spinal cord in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata.
    Smeets WJ; Timerick SJ
    J Comp Neurol; 1981 Nov; 202(4):473-91. PubMed ID: 7298910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebellar efferents in the lizard Varanus exanthematicus. II. Projections of the cerebellar nuclei.
    Bangma GC; ten Donkelaar HJ; Dederen PJ; de Boer-van Huizen R
    J Comp Neurol; 1984 Dec; 230(2):218-30. PubMed ID: 6512019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.