These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 7092571)
1. Isolation and identification of mercapturic acid metabolites of phenyl substituted acrylate esters from urine of female rats. Delbressin LP; van Balen HC; Seutter-Berlage F Arch Toxicol; 1982 Mar; 49(3-4):321-30. PubMed ID: 7092571 [TBL] [Abstract][Full Text] [Related]
2. Glutathione conjugation and bacterial mutagenicity of racemic and enantiomerically pure cis- and trans-methyl epoxycinnamates. Rietveld EC; van Gastel FJ; Seutter-Berlage F; Zwanenburg B Arch Toxicol; 1988 Apr; 61(5):366-72. PubMed ID: 3395248 [TBL] [Abstract][Full Text] [Related]
3. Identification or urinary mercapturic acids formed from acrylate, methacrylate and crotonate in the rat. Delbressine LP; Seutter-Berlage F; Seutter E Xenobiotica; 1981 Apr; 11(4):241-7. PubMed ID: 7303718 [TBL] [Abstract][Full Text] [Related]
4. Biotransformation of acrylates. Excretion of mercapturic acids and changes in urinary carboxylic acid profile in rat dosed with ethyl and 1-butyl acrylate. Linhart I; Vosmanská M; Smejkal J Xenobiotica; 1994 Oct; 24(10):1043-52. PubMed ID: 7900410 [TBL] [Abstract][Full Text] [Related]
5. Biotransformation of trichloroethene: dose-dependent excretion of 2,2,2-trichloro-metabolites and mercapturic acids in rats and humans after inhalation. Bernauer U; Birner G; Dekant W; Henschler D Arch Toxicol; 1996; 70(6):338-46. PubMed ID: 8975632 [TBL] [Abstract][Full Text] [Related]
6. Metabolism of some methyl 2-cyano-3-phenyl-acrylates (methyl alpha-cyanocinnamates) in rats. Rietveld EC; Engels WJ; Smit R; Seutter-Berlage F Xenobiotica; 1989 May; 19(5):477-88. PubMed ID: 2750205 [TBL] [Abstract][Full Text] [Related]
7. Metabolic pathways of 1-butyl [3-13C]acrylate. Identification of urinary metabolites in rat using nuclear magnetic resonance and mass spectroscopy. Linhart I; Hrabal R; Smejkal J; Mitera J Chem Res Toxicol; 1994; 7(1):1-8. PubMed ID: 8155818 [TBL] [Abstract][Full Text] [Related]
8. Glutathione conjugation of 1,2-dibromo-1-phenylethane in rats in vivo. Zoetemelk CE; van Hove W; van der Laan WL; van Meeteren-Wälchli B; van der Gen A; Breimer DD Drug Metab Dispos; 1987; 15(3):418-25. PubMed ID: 2886321 [TBL] [Abstract][Full Text] [Related]
9. Intrahepatic conversion of a glutathione conjugate to its mercapturic acid. Metabolism of 1-chloro-2,4-dinitrobenzene in isolated perfused rat and guinea pig livers. Hinchman CA; Matsumoto H; Simmons TW; Ballatori N J Biol Chem; 1991 Nov; 266(33):22179-85. PubMed ID: 1939239 [TBL] [Abstract][Full Text] [Related]
10. Excretion of the mercapturic acid S-[2-(N7-guanyl)ethyl]-N-acetylcysteine in urine following administration of ethylene dibromide to rats. Kim DH; Guengerich FP Cancer Res; 1989 Nov; 49(21):5843-7. PubMed ID: 2790795 [TBL] [Abstract][Full Text] [Related]
11. The disposition and metabolism of acrylic acid and ethyl acrylate in male Sprague-Dawley rats. deBethizy JD; Udinsky JR; Scribner HE; Frederick CB Fundam Appl Toxicol; 1987 May; 8(4):549-61. PubMed ID: 3609541 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of formation of mercapturic acids from aromatic aldehydes in vivo. Rietveld EC; Plate R; Seutter-Berlage F Arch Toxicol; 1983 Mar; 52(3):199-207. PubMed ID: 6860142 [TBL] [Abstract][Full Text] [Related]
13. Cytotoxicity and Pro-/Anti-inflammatory Properties of Cinnamates, Acrylates and Methacrylates Against RAW264.7 Cells. Murakami Y; Kawata A; Suzuki S; Fujisawa S In Vivo; 2018; 32(6):1309-1322. PubMed ID: 30348683 [TBL] [Abstract][Full Text] [Related]
14. Urinary metabolite profile of phenyl and o-cresyl glycidyl ether in rats: identification of a novel pathway leading to N-acetylserine O-conjugates. de Rooij BM; Commandeur JN; Hommes JW; Aalbers T; Groot EJ; Vermeulen NP Chem Res Toxicol; 1998 Feb; 11(2):111-8. PubMed ID: 9511902 [TBL] [Abstract][Full Text] [Related]
15. The reactivity of selected acrylate esters toward glutathione and deoxyribonucleosides in vitro: structure-activity relationships. McCarthy TJ; Hayes EP; Schwartz CS; Witz G Fundam Appl Toxicol; 1994 May; 22(4):543-8. PubMed ID: 8056201 [TBL] [Abstract][Full Text] [Related]
16. Formation of mercapturic acids from acrylonitrile, crotononitrile, and cinnamonitrile by direct conjugation and via an intermediate oxidation process. van Bladeren PJ; Delbressine LP; Hoogeterp JJ; Beaumont AH; Breimer DD; Seutter-Berlage F; van der Gen A Drug Metab Dispos; 1981; 9(3):246-9. PubMed ID: 6113934 [TBL] [Abstract][Full Text] [Related]
17. Metabolism of acrylate esters in rat tissue homogenates. Miller RR; Ayres JA; Rampy LW; McKenna MJ Fundam Appl Toxicol; 1981; 1(6):410-4. PubMed ID: 7185591 [TBL] [Abstract][Full Text] [Related]
19. Glutathione conjugation of chlorobenzylidene malononitriles in vitro and the biotransformation to mercapturic acids in rats. Rietveld EC; Hendrikx MM; Seutter-Berlage F Arch Toxicol; 1986 Dec; 59(4):228-34. PubMed ID: 3103585 [TBL] [Abstract][Full Text] [Related]
20. Metabolism of L-cysteine S-conjugates and N-(trideuteroacetyl)-L-cysteine S-conjugates of four fluoroethylenes in the rat. Role of balance of deacetylation and acetylation in relation to the nephrotoxicity of mercapturic acids. Commandeur JN; Stijntjes GJ; Wijngaard J; Vermeulen NP Biochem Pharmacol; 1991 Jun; 42(1):31-8. PubMed ID: 2069595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]