These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 7092666)

  • 21. Contributions of sensory tuning to auditory-vocal interactions in marmoset auditory cortex.
    Eliades SJ; Wang X
    Hear Res; 2017 May; 348():98-111. PubMed ID: 28284736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparative study of avian auditory brainstem responses: correlations with phylogeny and vocal complexity, and seasonal effects.
    Lucas JR; Freeberg TM; Krishnan A; Long GR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Dec; 188(11-12):981-92. PubMed ID: 12471495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High frequency hearing in jaundiced rats.
    Lenhardt ML; Clarke AM; Harkins SW
    J Aud Res; 1986 Jan; 26(1):19-25. PubMed ID: 3610988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The jaundiced gunn rat model of auditory neuropathy/dyssynchrony.
    Shaia WT; Shapiro SM; Spencer RF
    Laryngoscope; 2005 Dec; 115(12):2167-73. PubMed ID: 16369161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prepulse inhibition of the acoustic startle reflex vs. auditory brainstem response for hearing assessment.
    Longenecker RJ; Alghamdi F; Rosen MJ; Galazyuk AV
    Hear Res; 2016 Sep; 339():80-93. PubMed ID: 27349914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of posture on the normal and pathological auditory startle reflex.
    Brown P; Day BL; Rothwell JC; Thompson PD; Marsden CD
    J Neurol Neurosurg Psychiatry; 1991 Oct; 54(10):892-7. PubMed ID: 1744643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlation of augmented startle reflex with brainstem electrophysiological responses in Tay-Sachs disease.
    Nakamura S; Saito Y; Ishiyama A; Sugai K; Iso T; Inagaki M; Sasaki M
    Brain Dev; 2015 Jan; 37(1):101-6. PubMed ID: 24534057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of home-nest odors on the startle response in preweanling rats.
    Richardson R; Defina M
    Physiol Behav; 1998 Jul; 64(5):621-4. PubMed ID: 9817572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperbilirubinemia reduces the streptozotocin-induced pancreatic damage through attenuating the oxidative stress in the Gunn rat.
    Fu YY; Kang KJ; Ahn JM; Kim HR; Na KY; Chae DW; Kim S; Chin HJ
    Tohoku J Exp Med; 2010 Dec; 222(4):265-73. PubMed ID: 21139377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of the alpha and beta subunits of Ca2+/calmodulin kinase II in the cerebellum of jaundiced Gunn rats during development: a quantitative light microscopic analysis.
    Conlee JW; Shapiro SM; Churn SB
    Acta Neuropathol; 2000 Apr; 99(4):393-401. PubMed ID: 10787038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of isolation-induced vocal behavior in normal-hearing and deafened guinea pig infants.
    Arch-Tirado E; McCowan B; Saltijeral-Oaxaca J; Zarco de Coronado I; Licona-Bonilla J
    J Speech Lang Hear Res; 2000 Apr; 43(2):432-40. PubMed ID: 10757694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Auditory brainstem response in hyperbilirubinemic rat: Part I.
    Kuriyama M; Konishi Y; Sudo M
    Biol Neonate; 1990; 58(1):32-40. PubMed ID: 2117972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Changes of fast and slow components of brainstem auditory evoked potentials in the rat pups with hyperbilirubinemia].
    He SC; Chen ZI; Ma N
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2010 Feb; 26(1):77-81. PubMed ID: 20476573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural organization in the brainstem circuit mediating the primary acoustic head startle: an electrophysiological study in the rat.
    Pellet J
    Physiol Behav; 1990 Nov; 48(5):727-39. PubMed ID: 2082373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gating of auditory responses in the vocal control system of awake songbirds.
    Schmidt MF; Konishi M
    Nat Neurosci; 1998 Oct; 1(6):513-8. PubMed ID: 10196550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Producing song: the vocal apparatus.
    Suthers RA; Zollinger SA
    Ann N Y Acad Sci; 2004 Jun; 1016():109-29. PubMed ID: 15313772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vocal learning in birds and humans.
    Wilbrecht L; Nottebohm F
    Ment Retard Dev Disabil Res Rev; 2003; 9(3):135-48. PubMed ID: 12953292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional neuroanatomy of the sensorimotor control of singing.
    Wild JM
    Ann N Y Acad Sci; 2004 Jun; 1016():438-62. PubMed ID: 15313789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Minocycline improves recognition memory and attenuates microglial activation in Gunn rat: a possible hyperbilirubinemia-induced animal model of schizophrenia.
    Liaury K; Miyaoka T; Tsumori T; Furuya M; Hashioka S; Wake R; Tsuchie K; Fukushima M; Limoa E; Tanra AJ; Horiguchi J
    Prog Neuropsychopharmacol Biol Psychiatry; 2014 Apr; 50():184-90. PubMed ID: 24389395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Acoustic Properties of Low Intensity Vocalizations Match Hearing Sensitivity in the Webbed-Toed Gecko, Gekko subpalmatus.
    Chen J; Jono T; Cui J; Yue X; Tang Y
    PLoS One; 2016; 11(1):e0146677. PubMed ID: 26752301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.