These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 7092890)

  • 1. Binding of nucleotides to parvalbumins.
    Permyakov EA; Kalinichenko LP; Yarmolenko VV; Burstein EA; Gerday C
    Biochem Biophys Res Commun; 1982 Apr; 105(3):1059-65. PubMed ID: 7092890
    [No Abstract]   [Full Text] [Related]  

  • 2. Sodium and potassium binding to parvalbumins measured by means of intrinsic protein fluorescence.
    Permyakov EA; Kalinichenko LP; Medvedkin VN; Burstein EA; Gerday C
    Biochim Biophys Acta; 1983 Dec; 749(2):185-91. PubMed ID: 6652098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of adenosine di- and triphosphates to myosin during the hydrolysis of adenosine triphosphate.
    Inoue A; Tonomura Y
    J Biochem; 1974 Oct; 76(4):755-64. PubMed ID: 4279914
    [No Abstract]   [Full Text] [Related]  

  • 4. The interaction of nucleotides with kinases, monitored by changes in protein fluorescence.
    Price NC
    FEBS Lett; 1972 Jul; 24(1):21-3. PubMed ID: 4343813
    [No Abstract]   [Full Text] [Related]  

  • 5. Binding of calcium by parvalbumin fragments.
    Derancourt J; Haiech J; Pechère JF
    Biochim Biophys Acta; 1978 Feb; 532(2):373-5. PubMed ID: 623786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Nucleotide exchange on the F-actin component of muscle fibrils in the states of contraction, relaxation, and rigor. The exchange as argument in the discussion of the contractile mechanism].
    Appenheimer M; von Chak D; Weber HH
    Biochim Biophys Acta; 1972 Mar; 256(3):681-94. PubMed ID: 5020237
    [No Abstract]   [Full Text] [Related]  

  • 7. Non-equivalence of the CD and EF sites of muscular parvalbumins. A 113Cd NMR study.
    Drakenberg T; Lindman B; Cavé A; Parello J
    FEBS Lett; 1978 Aug; 92(2):346-50. PubMed ID: 29781
    [No Abstract]   [Full Text] [Related]  

  • 8. [Kinetics of dissociation of parvalbumin complexes with calcium and magnesium ions].
    Permiakov EA; Ostrovskiĭ AV; Kalinichenko LP; Deĭkus GIu
    Mol Biol (Mosk); 1987; 21(4):1017-22. PubMed ID: 3657779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Static and kinetic studies on carp muscle parvalbumins.
    Iio T; Hoshihara Y
    J Biochem; 1984 Aug; 96(2):321-8. PubMed ID: 6438069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state properties of calcium binding to parvalbumins from bullfrog skeletal muscle: effects of Mg2+, pH, ionic strength, and temperature.
    Ogawa Y; Tanokura M
    J Biochem; 1986 Jan; 99(1):73-80. PubMed ID: 3485630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titration of the nucleotide binding sites of sarcoplasmic reticulum Ca2+ -ATPase with 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate and 5'-diphosphate.
    Dupont Y; Chapron Y; Pougeois R
    Biochem Biophys Res Commun; 1982 Jun; 106(4):1272-9. PubMed ID: 6214259
    [No Abstract]   [Full Text] [Related]  

  • 12. Adenosine triphosphatase from rat liver mitochondria: separate sites involved in ATP hydrolysis and in the reversible, high affinity binding of ADP.
    Pedersen PL
    Biochem Biophys Res Commun; 1975 May; 64(2):610-6. PubMed ID: 125085
    [No Abstract]   [Full Text] [Related]  

  • 13. Investigations of substrate specificity and reaction mechanism of several kinases using chromium(III) adenosine 5'-triphosphate and chromium(III) adenosine 5'-diphosphate.
    Dunaway-Mariano D; Cleland WW
    Biochemistry; 1980 Apr; 19(7):1506-15. PubMed ID: 6248105
    [No Abstract]   [Full Text] [Related]  

  • 14. Calcium and magnesium binding by parvalbumin. A proton magnetic resonance spectral study.
    Birdsall WJ; Levine BA; Williams RJ; Demaille JG; Haiech J; Pechere JF
    Biochimie; 1979; 61(7):741-50. PubMed ID: 518923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Homologous calcium binding proteins (author's transl)].
    Grabarek Z; Kuźnicki J
    Postepy Biochem; 1980; 26(2):209-24. PubMed ID: 7001417
    [No Abstract]   [Full Text] [Related]  

  • 16. Tight binding of adenine nucleotides to beef-heart mitochondrial ATPase.
    Harris DA; Rosing J; van de Stadt RJ; Slater EC
    Biochim Biophys Acta; 1973 Aug; 314(2):149-53. PubMed ID: 4270535
    [No Abstract]   [Full Text] [Related]  

  • 17. Mg2+ binding to parvalbumins studied by 25Mg and 113Cd NMR spectroscopy.
    Cave A; Parello J; Drakenberg T; Thulin E; Lindman B
    FEBS Lett; 1979 Apr; 100(1):148-52. PubMed ID: 437098
    [No Abstract]   [Full Text] [Related]  

  • 18. Phenylalanyl-tRNA synthetase from E. coli: synergistic coupling between the sites for binding of L-phenylalanine and ATP.
    Holler E; Bartmann P; Hanke T; Kosakowski HM
    Biochem Biophys Res Commun; 1973 Aug; 53(4):1205-12. PubMed ID: 4584021
    [No Abstract]   [Full Text] [Related]  

  • 19. The molecular basis of contractility. II.
    Goody RS; Mannherz HG
    Basic Res Cardiol; 1974; 69(2):204-13. PubMed ID: 4603206
    [No Abstract]   [Full Text] [Related]  

  • 20. Calorimetric studies of calcium binding by amphibian parvalbumins.
    Tanokura M; Yamada K
    Prog Clin Biol Res; 1989; 315():215-6. PubMed ID: 2508133
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.