BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 7093214)

  • 1. Mechanistic studies on cyclohexanone oxygenase.
    Ryerson CC; Ballou DP; Walsh C
    Biochemistry; 1982 May; 21(11):2644-55. PubMed ID: 7093214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic studies of cyclohexanone monooxygenase: chemical properties of intermediates involved in catalysis.
    Sheng D; Ballou DP; Massey V
    Biochemistry; 2001 Sep; 40(37):11156-67. PubMed ID: 11551214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene.
    Lee WH; Park JB; Park K; Kim MD; Seo JH
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):329-38. PubMed ID: 17541782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of cyclohexanone monooxygenase reveal complex domain movements and a sliding cofactor.
    Mirza IA; Yachnin BJ; Wang S; Grosse S; Bergeron H; Imura A; Iwaki H; Hasegawa Y; Lau PC; Berghuis AM
    J Am Chem Soc; 2009 Jul; 131(25):8848-54. PubMed ID: 19385644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous biocatalyst production and Baeyer-Villiger oxidation for bioconversion of cyclohexanone by recombinant Escherichia coli expressing cyclohexanone monooxygenase.
    Lee WH; Park YC; Lee DH; Park K; Seo JH
    Appl Biochem Biotechnol; 2005; 121-124():827-36. PubMed ID: 15930562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of 4-hydroxyacetophenone into 4-phenyl acetate by a flavin adenine dinucleotide-containing Baeyer-Villiger-type monooxygenase.
    Tanner A; Hopper DJ
    J Bacteriol; 2000 Dec; 182(23):6565-9. PubMed ID: 11073896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of cyclohexanone 1,2-monooxygenase from Exophiala jeanselmei strain KUFI-6N.
    Hasegawa Y; Nakai Y; Tokuyama T; Iwaki H
    Biosci Biotechnol Biochem; 2000 Dec; 64(12):2696-8. PubMed ID: 11210139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active site arginine controls the stereochemistry of hydride transfer in cyclohexanone monooxygenase.
    Fordwour OB; Wolthers KR
    Arch Biochem Biophys; 2018 Dec; 659():47-56. PubMed ID: 30287236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The liver microsomal FAD-containing monooxygenase. Spectral characterization and kinetic studies.
    Poulsen LL; Ziegler DM
    J Biol Chem; 1979 Jul; 254(14):6449-55. PubMed ID: 36396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The substrate-bound crystal structure of a Baeyer-Villiger monooxygenase exhibits a Criegee-like conformation.
    Yachnin BJ; Sprules T; McEvoy MB; Lau PC; Berghuis AM
    J Am Chem Soc; 2012 May; 134(18):7788-95. PubMed ID: 22506764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active site variants provide insight into the nature of conformational changes that accompany the cyclohexanone monooxygenase catalytic cycle.
    Fordwour OB; Wolthers KR
    Arch Biochem Biophys; 2018 Sep; 654():85-96. PubMed ID: 30030997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical role of histidine residues in cyclohexanone monooxygenase expression, cofactor binding and catalysis.
    Cheesman MJ; Byron Kneller M; Rettie AE
    Chem Biol Interact; 2003 Oct; 146(2):157-64. PubMed ID: 14597129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an FMN-containing cyclohexanone monooxygenase from a cyclohexane-grown Xanthobacter sp.
    Trower MK; Buckland RM; Griffin M
    Eur J Biochem; 1989 Apr; 181(1):199-206. PubMed ID: 2540966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal BVMOs as alternatives to cyclohexanone monooxygenase.
    Mthethwa KS; Kassier K; Engel J; Kara S; Smit MS; Opperman DJ
    Enzyme Microb Technol; 2017 Nov; 106():11-17. PubMed ID: 28859804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of 8-substituted-FAD analogues to investigate the hydroxylation mechanism of the flavoprotein 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Chaiyen P; Sucharitakul J; Svasti J; Entsch B; Massey V; Ballou DP
    Biochemistry; 2004 Apr; 43(13):3933-43. PubMed ID: 15049701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of a flavin-dependent S-monooxygenase from garlic (
    Valentino H; Campbell AC; Schuermann JP; Sultana N; Nam HG; LeBlanc S; Tanner JJ; Sobrado P
    J Biol Chem; 2020 Aug; 295(32):11042-11055. PubMed ID: 32527723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced production of ε-caprolactone by coexpression of bacterial hemoglobin gene in recombinant Escherichia coli expressing cyclohexanone monooxygenase gene.
    Lee WH; Park EH; Kim MD
    J Microbiol Biotechnol; 2014 Dec; 24(12):1685-9. PubMed ID: 25269815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The oxidative half-reaction of liver microsomal FAD-containing monooxygenase.
    Beaty NB; Ballou DP
    J Biol Chem; 1981 May; 256(9):4619-25. PubMed ID: 7217103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting Cofactor Versatility to Convert a FAD-Dependent Baeyer-Villiger Monooxygenase into a Ketoreductase.
    Xu J; Peng Y; Wang Z; Hu Y; Fan J; Zheng H; Lin X; Wu Q
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14499-14503. PubMed ID: 31423719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.