These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 7093230)
1. Novel pyrene-containing organophosphates as fluorescent probes for studying aging-induced conformational changes in organophosphate-inhibited acetylcholinesterase. Amitai G; Ashani Y; Gafni A; Silman I Biochemistry; 1982 Apr; 21(9):2060-9. PubMed ID: 7093230 [No Abstract] [Full Text] [Related]
2. Fluorescent organophosphates: novel probes for studying aging-induced conformational changes in inhibited acetylcholinesterase and for localization of cholinesterase in nervous tissue. Amitai G; Ashani Y; Shahar A; Gafni A; Silman I Monogr Neural Sci; 1980; 7():70-84. PubMed ID: 7015117 [TBL] [Abstract][Full Text] [Related]
3. Oxime-mediated in vitro reactivation kinetic analysis of organophosphates-inhibited human and electric eel acetylcholinesterase. Sahu AK; Sharma R; Gupta B; Musilek K; Kuca K; Acharya J; Ghosh KK Toxicol Mech Methods; 2016 Jun; 26(5):319-26. PubMed ID: 27101948 [TBL] [Abstract][Full Text] [Related]
4. Reactivation and aging of cyclopentyl methylphosphonylated acetylcholinesterase in the presence of some 1-alkyl-2-hydroxyiminomethyl-pyridinium salts. de Jong LP; Wolring GZ Biochem Pharmacol; 1978; 27(24):2911-7. PubMed ID: 736984 [No Abstract] [Full Text] [Related]
5. Effect of 1-(AR)alkyl-2-hydroxyiminomethyl-pyridinium salts on reactivation and aging of acetyl-cholinesterase inhibited by ethyl dimethylphosphoramidocyanidate (tabun). de Jong LP; Wolring GZ Biochem Pharmacol; 1978; 27(18):2229-35. PubMed ID: 215152 [No Abstract] [Full Text] [Related]
6. Kinetics for the inhibition of acetylcholinesterase from the electric eel by some organophosphates and carbamates. Forsberg A; Puu G Eur J Biochem; 1984 Apr; 140(1):153-6. PubMed ID: 6705793 [TBL] [Abstract][Full Text] [Related]
7. Reactivating and protective effects of pyridinium compounds in human erythrocyte acetylcholinesterase inhibition by organophosphates in vitro. Skrinjarić-Spoljar M; Kralj M Arch Toxicol; 1980 May; 45(1):21-7. PubMed ID: 7396719 [No Abstract] [Full Text] [Related]
8. Effect of histidine modification on the aging of organophosphate-inhibited acetylcholinesterase. Beauregard G; Lum J; Roufogalis BD Biochem Pharmacol; 1981 Nov; 30(21):2915-20. PubMed ID: 7317087 [No Abstract] [Full Text] [Related]
9. Synthesis, biochemical evaluation, and molecular modeling studies of aryl and arylalkyl di-n-butyl phosphates, effective butyrylcholinesterase inhibitors. Nakayama K; Schwans JP; Sorin EJ; Tran T; Gonzalez J; Arteaga E; McCoy S; Alvarado W Bioorg Med Chem; 2017 Jun; 25(12):3171-3181. PubMed ID: 28416102 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of fluorescent probes directed to the active site gorge of acetylcholinesterase. Saltmarsh JR; Boyd AE; Rodriguez OP; Radić Z; Taylor P; Thompson CM Bioorg Med Chem Lett; 2000 Jul; 10(14):1523-6. PubMed ID: 10915041 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous reactivation of acetylcholinesterase following organophosphate inhibition. I. An analysis of anomalous reactivation kinetics. Hovanec JW; Broomfield CA; Steinberg GM; Lanks KW; Lieske CN Biochim Biophys Acta; 1977 Aug; 483(2):312-9. PubMed ID: 19068 [TBL] [Abstract][Full Text] [Related]
12. Discovery of New Classes of Compounds that Reactivate Acetylcholinesterase Inhibited by Organophosphates. Katz FS; Pecic S; Tran TH; Trakht I; Schneider L; Zhu Z; Ton-That L; Luzac M; Zlatanic V; Damera S; Macdonald J; Landry DW; Tong L; Stojanovic MN Chembiochem; 2015 Oct; 16(15):2205-2215. PubMed ID: 26350723 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and comparison of the biological activity of monocyclic phosphonate, difluorophosphonate and phosphate analogs of the natural AChE inhibitor cyclophostin. Martin BP; Vasilieva E; Dupureur CM; Spilling CD Bioorg Med Chem; 2015 Dec; 23(24):7529-34. PubMed ID: 26585276 [TBL] [Abstract][Full Text] [Related]
14. Why acetylcholinesterase reactivators do not work in butyrylcholinesterase. Wiesner J; Kríz Z; Kuca K; Jun D; Koca J J Enzyme Inhib Med Chem; 2010 Jun; 25(3):318-22. PubMed ID: 19874115 [TBL] [Abstract][Full Text] [Related]
15. Spontaneous reactivation of acetylcholinesterase following organophosphate inhibition. II. Characterization of the reactivating components. Lanks KW; Lieske CN; Papirmeister B Biochim Biophys Acta; 1977 Aug; 483(2):320-30. PubMed ID: 560865 [TBL] [Abstract][Full Text] [Related]
16. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Gorecki L; Korabecny J; Musilek K; Malinak D; Nepovimova E; Dolezal R; Jun D; Soukup O; Kuca K Arch Toxicol; 2016 Dec; 90(12):2831-2859. PubMed ID: 27582056 [TBL] [Abstract][Full Text] [Related]
17. Reactivation kinetics of a homologous series of bispyridinium bis-oximes with nerve agent-inhibited human acetylcholinesterase. Worek F; von der Wellen J; Musilek K; Kuca K; Thiermann H Arch Toxicol; 2012 Sep; 86(9):1379-86. PubMed ID: 22437842 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and in-vitro reactivation screening of imidazolium aldoximes as reactivators of sarin and VX-inhibited human acetylcholinesterase (hAChE). Sharma R; Gupta B; Sahu AK; Acharya J; Satnami ML; Ghosh KK Chem Biol Interact; 2016 Nov; 259(Pt B):85-92. PubMed ID: 27138243 [TBL] [Abstract][Full Text] [Related]
19. Recording spectrophotometric method for determination of dissociation and phosphorylation constants for the inhibition of acetylcholinesterase by organophosphates in the presence of substrate. Hart GJ; O'Brien RD Biochemistry; 1973 Jul; 12(15):2940-5. PubMed ID: 4737014 [No Abstract] [Full Text] [Related]
20. The arrangement of substrate and organophosphorus-inhibitor leaving groups in acetylcholinesterase active site. Järv J; Aaviksaar A; Godovikov N; Lobanov D Biochem J; 1977 Dec; 167(3):823-5. PubMed ID: 603636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]